随着智能制造与物联网技术的发展,无人机被电网企业广泛地应用于输电线路巡视检查,同时也产生了大量的巡检图像数据亟需分析与处理。针对机巡图像分析中面临的多类多尺度、光照变化及遮挡等挑战,设计了一套从用户数据归集、分析与自动标注到用户评价反馈的U2U图像分析框架,在此基础上研究了Faster R-CNN和SSD两种深度学习方法在绝缘子、防震锤、均压环、屏蔽环等电力部件检测中的应用,提出了基于K-means++聚类分析的兴趣对象锚点信息框设定方法。实验结果表明,本文提出的方法有效地提高了深度学习方法对多