机器学习和自然语言处理的敏捷开发中的软件工作量预测
软件开发项目的成功除其他因素外,还取决于项目和时间管理。用于帮助敏捷软件开发的时间管理和估计项目时间表的一种流行方法是估计故事点数,该故事点数表示每个单个软件问题或请求的开发工作量(以工时为单位)。在本文中,我们探索了各种文本向量化机器学习技术,以预测以故事点数衡量的软件开发工作量。我们的结果表明,该问题可以表述为分类问题或回归问题,并可以通过监督学习成功解决。此外,我们的几种回归模型比以前的文献具有更高的准确性。我们还证明,与一般的半监督学习