function y=kMeansCluster(m,k,isRand) %kMeansCluster - Simple k means clustering algorithm if nargin<3, isRand=0; end if nargin<2, k=1; end [maxRow, maxCol]=size(m) if maxRow<=k, y=[m, 1:maxRow] else % initial value of centroid if isRand, p
isodata算法的matlab实现% kMeansCluster - Simple k means clustering algorithm % Author: Kardi Teknomo, Ph.D. % % Purpose: classify the objects in data matrix based on the attributes % Criteria: minimize Euclidean distance between centroids and object poin