1、使用函数模型API,新建一个model,将输入和输出定义为原来的model的输入和想要的那一层的输出,然后重新进行predict.
#coding=utf-8
import seaborn as sbn
import pylab as plt
import theano
from keras.models import Sequential
from keras.layers import Dense,Activation
from keras.models import Model
mo
更新:
感谢评论区提供的方案。
采用model.summary(),model.get_config()和for循环均可获得Keras的层名。
示例如下图
对于keras特定层的命名,只需在层内添加 name 即可
model.add(Activation('softmax',name='dense_1') ) # 注意 name 要放于函数内
#提取中间层
from keras.models import Model
import keras
layer_name = 'dense_1'