您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. python简单神经网络

  2. 根据慕课网“机器学习-实现简单神经网络”编写的python代码,实验环境为anaconda python3.6,感知器算法进行分类,数据为网上的花瓣数据,100个样本
  3. 所属分类:Python

    • 发布日期:2017-09-18
    • 文件大小:7168
    • 提供者:u014220146
  1. sklearn0.19中文文档

  2. sklearn0.19中文文档 PDF格式高清。 .1. 广义线性模型 1.1.1. 普通最小二乘法 1.1.1.1. 普通最小二乘法复杂度 1.1.2. 岭回归 1.1.2.1. 岭回归的复杂度 1.1.2.2. 设置正则化参数:广义交叉验证 1.1.3. Lasso 1.1.3.1. 设置正则化参数 1.1.3.1.1. 使用交叉验证 1.1.3.1.2. 基于信息标准的模型选择 1.1.3.1.3. 与 SVM 的正则化参数的比较 1.1.4. 多任务 Lasso 1.1.5. 弹性网络
  3. 所属分类:机器学习

    • 发布日期:2018-10-30
    • 文件大小:14680064
    • 提供者:hardpen2013
  1. AI学习知识点.xmind

  2. *AI学习知识点* 1. 基础知识 概率论 微积分与逼近论 极限、微分、积分的基本概念 利用逼近的思想理解微积分,利用积分的方式理解概率论 概率论的基础 古典模型 常见的概率分布 大数定理和中心极限定理 协方差和相关系数 最大似然估计和最大后验估计 凸优化 凸优化的基本概念 凸函数 凸集 凸优化问题的标准形式 线性代数及矩阵 线性空间及线性变化 矩阵的基本概念 状态转移矩阵 特征
  3. 所属分类:Python

    • 发布日期:2019-07-15
    • 文件大小:240640
    • 提供者:lingfeian
  1. scikit-learn-0.21.3-中文文档.pdf

  2. scikit-learn 是基于 Python 语言的机器学习工具 简单高效的数据挖掘和数据分析工具 可供大家在各种环境中重复使用 建立在 NumPy ,SciPy 和 matplotlib 上 开源,可商业使用 - BSD许可证1.监督学习 1广义线性模型 °1.1.1普通最小二乘法 1.1.2岭回归 1.1.3LaSs0 o1.1.4多任务 Lasso 115弹性网络 o116多任务弹性网络 1.1.7最小角回归 1.1. 8 LARS Lasso 1.19正交匹配追踪法(OMP 1.1.1
  3. 所属分类:机器学习

    • 发布日期:2019-08-24
    • 文件大小:41943040
    • 提供者:h394266861
  1. python实现神经网络感知器算法

  2. 主要为大家详细介绍了python实现神经网络感知器算法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
  3. 所属分类:其它

    • 发布日期:2020-09-20
    • 文件大小:74752
    • 提供者:weixin_38610717
  1. Python基于OpenCV库Adaboost实现人脸识别功能详解

  2. 本文实例讲述了Python基于OpenCV库Adaboost实现人脸识别功能。分享给大家供大家参考,具体如下: 以前用Matlab写神经网络的面部眼镜识别算法,研究算法逻辑,采集大量训练数据,迭代,计算各感知器的系数。。。相当之麻烦~而现在运用调用pythonOpenCV库Adaboost算法,无需知道算法逻辑,无需进行模型训练,人脸识别变得相当之简单了。 需要用到的库是opencv(open source computer vision),下载安装方式如下: 使用pip install nu
  3. 所属分类:其它

    • 发布日期:2020-12-24
    • 文件大小:238592
    • 提供者:weixin_38581455
  1. 第四章神经网络的学习算法——随机梯度下降numpy代码详解

  2. 本专栏是书《深度学习入门》的阅读笔记一共八章: 第一章深度学习中的Python基础。主要讲解了深度学习将要用到的python的基础知识以及简单介绍了numpy库和matpoltlib库,本书编写深度学习神经网络代码仅使用Python和numpy库,不使用目前流行的各种深度学习框架,适合入门新手学习理论知识。 第二章感知机。主要介绍了神经网络和深度学习的基本单元感知机。感知机接收多个输入,产生一个输出,单层感知器可以实现与门,或门以及与非门,但是不能实现异或门,异或门的实现需要借助多层感知机,这也
  3. 所属分类:其它

    • 发布日期:2020-12-21
    • 文件大小:96256
    • 提供者:weixin_38616809
  1. 自适应线性神经网络Adaline的python实现详解

  2. 自适应线性神经网络Adaptive linear network, 是神经网络的入门级别网络。 相对于感知器,采用了f(z)=z的激活函数,属于连续函数。 代价函数为LMS函数,最小均方算法,Least mean square。 实现上,采用随机梯度下降,由于更新的随机性,运行多次结果是不同的。 ''' Adaline classifier created on 2019.9.14 author: vince ''' import pandas import math import num
  3. 所属分类:其它

    • 发布日期:2020-12-26
    • 文件大小:143360
    • 提供者:weixin_38686542
  1. 神经网络模型详解与误差逆传播优化

  2. 文章目录一、神经元模型1.1 M-P神经元1.2 激励函数1.2.1 单位阶跃函数1.2.2 logistic函数(sigmoid)1.2.3 tanh函数(双曲正切函数)1.2.4 ReLU(修正线性单元)1.2.5 激励函数对比1.3 罗森布拉特感知器1.4 Adaline(自适应线性神经元)二、神经网络模型2.1 线性不可分问题2.2 多层前馈神经网络三、神经网络学习:误差逆传播四、Python实现4.1 确定参数4.2 内置数据预处理器4.3 数据初始化4.4 BP算法4.6 预测类标五
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:275456
    • 提供者:weixin_38592502
  1. ML_Pattern:机器学习和模式识别的一些公认算法[决策树,Adaboost,感知器,聚类,神经网络等]是使用python从头开始实现的。 还包括数据集以测试算法-源码

  2. ML_Pattern:机器学习和模式识别的一些公认算法[决策树,Adaboost,感知器,聚类,神经网络等]是使用python从头开始实现的。 还包括数据集以测试算法
  3. 所属分类:其它

    • 发布日期:2021-02-06
    • 文件大小:6291456
    • 提供者:weixin_42138525
  1. 人工智能和机器学习:用于实现人工智能算法的存储库,其中包括机器学习和深度学习算法以及经典的AI搜索算法-源码

  2. 人工智能与机器学习 这是我不时从事的人工智能项目的存储库。 您可以找到用不同语言(包括Java,Python和C ++)从头开始编码的算法。 该算法的范围从经典的人工智能搜索算法到机器学习和深度学习算法。 如果您希望对某种算法进行编码和解释,欢迎提出。 我也有实现AI / ml到现实世界项目的实现,请参见下面的目录,以偷偷摸摸地查看这些项目! 表中的内容 :gear: :实现深层神经网络的所有组成部分,包括感知器,梯度发光,反向传播,正向传播等。 :spider_web_selector
  3. 所属分类:其它

    • 发布日期:2021-02-05
    • 文件大小:41943040
    • 提供者:weixin_42122306
  1. 感知器-从零开始学深度学习

  2. 未来将是人工智能和大数据的时代,是各行各业使用人工智能在云上处理大数据的时代,深度学习将是新时代的一大利器,在此我将从零开始记录深度学习的学习历程。我希望在学习过程中做到以下几点:了解各种神经网络设计原理。 掌握各种深度学习算法的python编程实现。 运用深度学习解决实际问题。 让我们开始踏上深度度学习的征程。 想要了解“神经网络”,我们需要了解一种叫做“感知器”
  3. 所属分类:其它

    • 发布日期:2021-01-27
    • 文件大小:120832
    • 提供者:weixin_38652196
  1. python实现神经网络感知器算法

  2. 现在我们用python代码实现感知器算法。 # -*- coding: utf-8 -*- import numpy as np class Perceptron(object): eta:学习率 n_iter:权重向量的训练次数 w_:神经分叉权重向量 errors_:用于记录神经元判断出错次数 def __init__(self, eta=0.01, n_iter=2): self.eta = eta self.n_iter = n_iter pass de
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:74752
    • 提供者:weixin_38577378
  1. 深度学习(神经网络)[1]——单层感知器

  2. 深度学习(神经网络)[1] —— 单层感知器算法描述python实现示例运行结果可视化 算法描述 最原始的神经网络模型,类似于神经网络中的单个神经元,该算法局限性也很大,只适用于解决线性可分的问题和异或问题,对于线性不可分的问题则无法解决。但作为神经网络的基本单元,学习和理解单层感知器,对后续的学习是很有帮助的。 python实现 # ************************** Perception ****************** import numpy as np impor
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:47104
    • 提供者:weixin_38590309