您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 随机梯度下降法python实现

  2. m = 100000 x = np.random.normal(size = m) X = x.reshape(-1, 1) y = 4.0 * x + 3.0 + np.random.normal(0 ,3, size = m) 。。。
  3. 所属分类:机器学习

    • 发布日期:2018-10-07
    • 文件大小:951
    • 提供者:qq_33912144
  1. sklearn0.19中文文档

  2. sklearn0.19中文文档 PDF格式高清。 .1. 广义线性模型 1.1.1. 普通最小二乘法 1.1.1.1. 普通最小二乘法复杂度 1.1.2. 岭回归 1.1.2.1. 岭回归的复杂度 1.1.2.2. 设置正则化参数:广义交叉验证 1.1.3. Lasso 1.1.3.1. 设置正则化参数 1.1.3.1.1. 使用交叉验证 1.1.3.1.2. 基于信息标准的模型选择 1.1.3.1.3. 与 SVM 的正则化参数的比较 1.1.4. 多任务 Lasso 1.1.5. 弹性网络
  3. 所属分类:机器学习

    • 发布日期:2018-10-30
    • 文件大小:14680064
    • 提供者:hardpen2013
  1. AI学习知识点.xmind

  2. *AI学习知识点* 1. 基础知识 概率论 微积分与逼近论 极限、微分、积分的基本概念 利用逼近的思想理解微积分,利用积分的方式理解概率论 概率论的基础 古典模型 常见的概率分布 大数定理和中心极限定理 协方差和相关系数 最大似然估计和最大后验估计 凸优化 凸优化的基本概念 凸函数 凸集 凸优化问题的标准形式 线性代数及矩阵 线性空间及线性变化 矩阵的基本概念 状态转移矩阵 特征
  3. 所属分类:Python

    • 发布日期:2019-07-15
    • 文件大小:240640
    • 提供者:lingfeian
  1. scikit-learn-0.21.3-中文文档.pdf

  2. scikit-learn 是基于 Python 语言的机器学习工具 简单高效的数据挖掘和数据分析工具 可供大家在各种环境中重复使用 建立在 NumPy ,SciPy 和 matplotlib 上 开源,可商业使用 - BSD许可证1.监督学习 1广义线性模型 °1.1.1普通最小二乘法 1.1.2岭回归 1.1.3LaSs0 o1.1.4多任务 Lasso 115弹性网络 o116多任务弹性网络 1.1.7最小角回归 1.1. 8 LARS Lasso 1.19正交匹配追踪法(OMP 1.1.1
  3. 所属分类:机器学习

    • 发布日期:2019-08-24
    • 文件大小:41943040
    • 提供者:h394266861
  1. 三种优化算法实现根据两门成绩判断学生能否录取的logistic应用

  2. 用三种优化方法实现logistic回归的应用,根据学生的两门成绩,判断是否能录取。采用梯度下降法(GD),随机梯度下降法(SGD)和牛顿法(Newton)三种优化方法,绘制动态迭代图,可以动态观察决策结果以及损失函数的收敛过程。数据集和三种算法的代码均打包在一起,采用Jupyter Notebook编写(python)。
  3. 所属分类:Python

    • 发布日期:2020-07-01
    • 文件大小:12288
    • 提供者:ldm_666
  1. python实现随机梯度下降法

  2. 主要为大家详细介绍了python实现随机梯度下降法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
  3. 所属分类:其它

    • 发布日期:2020-09-20
    • 文件大小:70656
    • 提供者:weixin_38701156
  1. python实现随机梯度下降法

  2. 看这篇文章前强烈建议你看看上一篇python实现梯度下降法: 一、为什么要提出随机梯度下降算法 注意看梯度下降法权值的更新方式(推导过程在上一篇文章中有)  也就是说每次更新权值都需要遍历整个数据集(注意那个求和符号),当数据量小的时候,我们还能够接受这种算法,一旦数据量过大,那么使用该方法会使得收敛过程极度缓慢,并且当存在多个局部极小值时,无法保证搜索到全局最优解。为了解决这样的问题,引入了梯度下降法的进阶形式:随机梯度下降法。 二、核心思想 对于权值的更新不再通过遍历全部的数据集,而是选择
  3. 所属分类:其它

    • 发布日期:2020-12-25
    • 文件大小:70656
    • 提供者:weixin_38618094
  1. Python实现简单遗传算法(SGA)

  2. 本文用Python3完整实现了简单遗传算法(SGA) Simple Genetic Alogrithm是模拟生物进化过程而提出的一种优化算法。SGA采用随机导向搜索全局最优解或者说近似全局最优解。传统的爬山算法(例如梯度下降,牛顿法)一次只优化一个解,并且对于多峰的目标函数很容易陷入局部最优解,而SGA算法一次优化一个种群(即一次优化多个解),SGA比传统的爬山算法更容易收敛到全局最优解或者近似全局最优解。 SGA基本流程如下: 1、对问题的解进行二进制编码。编码涉及精度的问题,在本例中精度
  3. 所属分类:其它

    • 发布日期:2020-12-25
    • 文件大小:137216
    • 提供者:weixin_38672962
  1. 机器学习:Python机器学习在图像处理和算法实现中的应用,包括期望最大化,因子分析,高斯混合模型,OPTICS,DBSCAN,随机森林,决策树,支持向量机,主成分分析,K最近邻,K Means,朴素贝叶斯混合模型,高斯判别分析,牛顿法,梯

  2. 机器学习 介绍 机器学习是如此别致,每个程序员甚至非程序员都开始学习。 经过几个月的在线课程,每个人都成为了自称为数据科学家。 管理人员寄予厚望,并部署数据科学家来进行机器学习。 很快,人们遇到了死胡同,在虹膜数据集范围之外的事情运行得并不顺利! 如果您去过我的其他存储库,例如或,您一定已经看到我猛烈抨击机器学习的鲁ck应用。 停止销售AI蛇油! 不要误会我的意思。 我不是对机器学习持怀疑态度的人。 我看到了机器学习的巨大潜力,但是我对目前对人工智能的高估持怀疑态度,而坦率地说,人工智能已经不在
  3. 所属分类:其它

    • 发布日期:2021-02-16
    • 文件大小:2097152
    • 提供者:weixin_42105570