您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. python实现PCA降维的示例详解

  2. 今天小编就为大家分享一篇python实现PCA降维的示例详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
  3. 所属分类:其它

    • 发布日期:2020-09-17
    • 文件大小:149504
    • 提供者:weixin_38738977
  1. python实现PCA降维的示例详解

  2. 概述 本文主要介绍一种降维方法,PCA(Principal Component Analysis,主成分分析)。降维致力于解决三类问题。 1. 降维可以缓解维度灾难问题; 2. 降维可以在压缩数据的同时让信息损失最小化; 3. 理解几百个维度的数据结构很困难,两三个维度的数据通过可视化更容易理解。 PCA简介 在理解特征提取与处理时,涉及高维特征向量的问题往往容易陷入维度灾难。随着数据集维度的增加,算法学习需要的样本数量呈指数级增加。有些应用中,遇到这样的大数据是非常不利的,而且从大数据集中学习
  3. 所属分类:其它

    • 发布日期:2020-12-20
    • 文件大小:152576
    • 提供者:weixin_38752897