您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. AI学习知识点.xmind

  2. *AI学习知识点* 1. 基础知识 概率论 微积分与逼近论 极限、微分、积分的基本概念 利用逼近的思想理解微积分,利用积分的方式理解概率论 概率论的基础 古典模型 常见的概率分布 大数定理和中心极限定理 协方差和相关系数 最大似然估计和最大后验估计 凸优化 凸优化的基本概念 凸函数 凸集 凸优化问题的标准形式 线性代数及矩阵 线性空间及线性变化 矩阵的基本概念 状态转移矩阵 特征
  3. 所属分类:Python

    • 发布日期:2019-07-15
    • 文件大小:240640
    • 提供者:lingfeian
  1. 总结:Bootstrap(自助法),Bagging,Boosting(提升) - 简书.pdf

  2. 关于机器学习方面的集成算法,包括boosting和bagging,里面讲解详细,值得下载2019/4/27 总结: Bootstrap(白助法), Bagging, Boosting(提升)-简书 assiier 1 -9 Decition boundary Classifier 2 Decislon boundary 2 Classifier 3 o Decision boundary 3 ▲△▲ △6▲ Feature 1 Feature 1 Featur (∑ g Feature Ense
  3. 所属分类:机器学习

    • 发布日期:2019-10-13
    • 文件大小:2097152
    • 提供者:qq_15141977
  1. python数据预处理方式 :数据降维

  2. 今天小编就为大家分享一篇python数据预处理方式 :数据降维,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
  3. 所属分类:其它

    • 发布日期:2020-09-17
    • 文件大小:75776
    • 提供者:weixin_38659311
  1. python数据预处理方式 :数据降维

  2. 数据为何要降维 数据降维可以降低模型的计算量并减少模型运行时间、降低噪音变量信息对于模型结果的影响、便于通过可视化方式展示归约后的维度信息并减少数据存储空间。因此,大多数情况下,当我们面临高维数据时,都需要对数据做降维处理。 数据降维有两种方式:特征选择,维度转换 特征选择 特征选择指根据一定的规则和经验,直接在原有的维度中挑选一部分参与到计算和建模过程,用选择的特征代替所有特征,不改变原有特征,也不产生新的特征值。 特征选择的降维方式好处是可以保留原有维度特征的基础上进行降维,既能满足后续数据
  3. 所属分类:其它

    • 发布日期:2020-12-20
    • 文件大小:76800
    • 提供者:weixin_38616330
  1. python sklearn包——混淆矩阵、分类报告等自动生成方式

  2. preface:做着最近的任务,对数据处理,做些简单的提特征,用机器学习算法跑下程序得出结果,看看哪些特征的组合较好,这一系列流程必然要用到很多函数,故将自己常用函数记录上。应该说这些函数基本上都会用到,像是数据预处理,处理完了后特征提取、降维、训练预测、通过混淆矩阵看分类效果,得出报告。 1.输入 从数据集开始,提取特征转化为有标签的数据集,转为向量。拆分成训练集和测试集,这里不多讲,在上一篇博客中谈到用StratifiedKFold()函数即可。在训练集中有data和target开始。 2.
  3. 所属分类:其它

    • 发布日期:2021-01-21
    • 文件大小:70656
    • 提供者:weixin_38547887