点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - python矩阵乘向量
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
sklearn0.19中文文档
sklearn0.19中文文档 PDF格式高清。 .1. 广义线性模型 1.1.1. 普通最小二乘法 1.1.1.1. 普通最小二乘法复杂度 1.1.2. 岭回归 1.1.2.1. 岭回归的复杂度 1.1.2.2. 设置正则化参数:广义交叉验证 1.1.3. Lasso 1.1.3.1. 设置正则化参数 1.1.3.1.1. 使用交叉验证 1.1.3.1.2. 基于信息标准的模型选择 1.1.3.1.3. 与 SVM 的正则化参数的比较 1.1.4. 多任务 Lasso 1.1.5. 弹性网络
所属分类:
机器学习
发布日期:2018-10-30
文件大小:14680064
提供者:
hardpen2013
scikit-learn-0.21.3-中文文档.pdf
scikit-learn 是基于 Python 语言的机器学习工具 简单高效的数据挖掘和数据分析工具 可供大家在各种环境中重复使用 建立在 NumPy ,SciPy 和 matplotlib 上 开源,可商业使用 - BSD许可证1.监督学习 1广义线性模型 °1.1.1普通最小二乘法 1.1.2岭回归 1.1.3LaSs0 o1.1.4多任务 Lasso 115弹性网络 o116多任务弹性网络 1.1.7最小角回归 1.1. 8 LARS Lasso 1.19正交匹配追踪法(OMP 1.1.1
所属分类:
机器学习
发布日期:2019-08-24
文件大小:41943040
提供者:
h394266861
解决Python计算矩阵乘向量,矩阵乘实数的一些小错误
今天小编就为大家分享一篇解决Python计算矩阵乘向量,矩阵乘实数的一些小错误,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
所属分类:
其它
发布日期:2020-09-18
文件大小:97280
提供者:
weixin_38614268
对python中的乘法dot和对应分量相乘multiply详解
向量点乘 (dot) 和对应分量相乘 (multiply) : >>> a array([1, 2, 3]) >>> b array([ 1., 1., 1.]) >>> np.multiply(a,b) array([ 1., 2., 3.]) >>> np.dot(a,b) 6.0 矩阵乘法 (dot) 和对应分量相乘 (multiply) : >>> c matrix([[1, 2, 3]]) &
所属分类:
其它
发布日期:2020-12-25
文件大小:28672
提供者:
weixin_38516658
解决Python计算矩阵乘向量,矩阵乘实数的一些小错误
计算:Ax-b A: 2*2 x: 2*1 b: 2*1 so, Ax-b: 2*1 if __name__ == __main__: A = np.array([[4.0, 1.0], [1.0, 3.0]]) b = np.array([[1.0], [2.0]]) x_0 = np.array([[2.0], [1.0]]) r_k = A * x_0 - b print(r_k) 错误!!! 修改: if __name__ == __
所属分类:
其它
发布日期:2021-01-20
文件大小:100352
提供者:
weixin_38741195
梯度下降算法和牛顿算法原理以及使用python用梯度下降和最小二乘算法求回归系数
梯度下降算法 以下内容参考 微信公众号 AI学习与实践平台 SIGAI 导度和梯度的问题 因为我们做的是多元函数的极值求解问题,所以我们直接讨论多元函数。多元函数的梯度定义为: 其中称为梯度算子,它作用于一个多元函数,得到一个向量。下面是计算函数梯度的一个例子 可导函数在某一点处取得极值的必要条件是梯度为0,梯度为0的点称为函数的驻点,这是疑似极值点。需要注意的是,梯度为0只是函数取极值的必要条件而不是充分条件,即梯度为0的点可能不是极值点。 至于是极大值还是极小值,要看二阶导数/Hess
所属分类:
其它
发布日期:2021-01-20
文件大小:348160
提供者:
weixin_38674616