您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 毕达哥拉斯树与python代码

  2. 毕达哥拉斯树与python代码,介绍了如何用Python代码来表示毕达哥拉斯树
  3. 所属分类:Python

    • 发布日期:2013-06-13
    • 文件大小:24576
    • 提供者:u010266343
  1. 决策树算法python代码实现

  2. 决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy = 系统的凌乱程度,使用算法ID3, C4.5和C5.0生成树算法使用熵。这一度量是基于信息学理论中熵的概念。 决策树是一种树形结构,其中每个内部节点
  3. 所属分类:机器学习

    • 发布日期:2018-06-01
    • 文件大小:4096
    • 提供者:u010919410
  1. 决策树 python

  2. 1.分类决策树模型是表示基于特征对实例进行分类的树形结构。决策树可以转换成一个if-then规则的集合,也可以看作是定义在特征空间划分上的类的条件概率分布。 2.决策树学习旨在构建一个与训练数据拟合很好,并且复杂度小的决策树。因为从可能的决策树中直接选取最优决策树是NP完全问题。现实中采用启发式方法学习次优的决策树。 决策树学习算法包括3部分:特征选择、树的生成和树的剪枝。常用的算法有ID3、 C4.5和CART。
  3. 所属分类:机器学习

    • 发布日期:2020-05-06
    • 文件大小:8192
    • 提供者:qq_44990155
  1. 二叉树的python、c、cython实现代码

  2. 由python、C、Cython实现的二叉树树源码。树是一种重要的非线性数据结构,直观地看,它是数据元素(在树中称为结点)按分支关系组织起来的结构,很象自然界中的树那样。树结构在客观世界中广泛存在,如人类社会的族谱和各种社会组织机构都可用树形象表示。树在计算机领域中也得到广泛应用,如在编译源程序时,可用树表示源程序的语法结构。又如在数据库系统中,树型结构也是信息的重要组织形式之一。一切具有层次关系的问题都可用树来描述。
  3. 所属分类:Python

    • 发布日期:2020-07-17
    • 文件大小:51200
    • 提供者:West_Metre
  1. python中树与树的表示知识点总结

  2. 在本篇文章里小编给大家分享的是关于python中树与树的表示的相关知识点,需要的读者们学习下吧。
  3. 所属分类:其它

    • 发布日期:2020-09-18
    • 文件大小:1048576
    • 提供者:weixin_38706100
  1. Python解析树及树的遍历

  2. 解析树 完成树的实现之后,现在我们来看一个例子,告诉你怎么样利用树去解决一些实际问题。在这个章节,我们来研究解析树。解析树常常用于真实世界的结构表示,例如句子或数学表达式。 图 1:一个简单句的解析树 图 1 显示了一个简单句的层级结构。将一个句子表示为一个树,能使我们通过利用子树来处理句子中的每个独立的结构。 图 2: ((7+3)*(5−2)) 的解析树 如图 2 所示,我们能将一个类似于 ((7+3)*(5−2)) 的数学表达式表示出一个解析树。我们已经研究过全括号表达式,那么我们怎样
  3. 所属分类:其它

    • 发布日期:2020-12-25
    • 文件大小:225280
    • 提供者:weixin_38713009
  1. Python基于回溯法子集树模板实现图的遍历功能示例

  2. 本文实例讲述了Python基于回溯法子集树模板实现图的遍历功能。分享给大家供大家参考,具体如下: 问题 一个图: A –> B A –> C B –> C B –> D B –> E C –> A C –> D D –> C E –> F F –> C F –> D 从图中的一个节点E出发,不重复地经过所有其它节点后,回到出发节点E,称为一条路径。请找出所有可能的路径。 分析 将这个图可视化如下: 本问题涉及到图,那首先要考虑图
  3. 所属分类:其它

    • 发布日期:2020-12-25
    • 文件大小:82944
    • 提供者:weixin_38607552
  1. Python机器学习之决策树算法实例详解

  2. 本文实例讲述了Python机器学习之决策树算法。分享给大家供大家参考,具体如下: 决策树学习是应用最广泛的归纳推理算法之一,是一种逼近离散值目标函数的方法,在这种方法中学习到的函数被表示为一棵决策树。决策树可以使用不熟悉的数据集合,并从中提取出一系列规则,机器学习算法最终将使用这些从数据集中创造的规则。决策树的优点为:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据。缺点为:可能产生过度匹配的问题。决策树适于处理离散型和连续型的数据。 在决策树中最重要的就是如何选取
  3. 所属分类:其它

    • 发布日期:2020-12-25
    • 文件大小:83968
    • 提供者:weixin_38643212
  1. python实现堆和索引堆的代码示例

  2. 堆是一棵完全二叉树。堆分为大根堆和小根堆,大根堆是父节点大于左右子节点,并且左右子树也满足该性质的完全二叉树。小根堆相反。可以利用堆来实现优先队列。 由于是完全二叉树,所以可以使用数组来表示堆,索引从0开始[0:length-1]。结点i的左右子节点分别为2i+1,2i+2。长度为length的树的最后一个非叶子节点为length//2-1。当前节点i的父节点为(i-1)//2。其中//表示向下取整。 以大根堆举例。当每次插入或者删除的时候,为了保证堆的结构特征不被破坏,需要进行调整。调整分为两
  3. 所属分类:其它

    • 发布日期:2020-12-25
    • 文件大小:72704
    • 提供者:weixin_38537050
  1. python获取目录下所有文件的方法

  2. 本文实例讲述了python获取目录下所有文件的方法。分享给大家供大家参考。具体分析如下: os.walk() 函数声明:walk(top,topdown=True,onerror=None) 1. 参数top表示需要遍历的目录树的路径 2. 参数topdown的默认值是”True”,表示首先返回目录树下的文件,然后在遍历目录树的子目录.Topdown的值为”False”时,则表示先遍历目录树的子目录,返回子目录下的文件,最后返回根目录下的文件 3. 参数onerror的默认值是”None”,表示
  3. 所属分类:其它

    • 发布日期:2020-12-25
    • 文件大小:36864
    • 提供者:weixin_38576561
  1. Python决策树和随机森林算法实例详解

  2. 本文实例讲述了Python决策树和随机森林算法。分享给大家供大家参考,具体如下: 决策树和随机森林都是常用的分类算法,它们的判断逻辑和人的思维方式非常类似,人们常常在遇到多个条件组合问题的时候,也通常可以画出一颗决策树来帮助决策判断。本文简要介绍了决策树和随机森林的算法以及实现,并使用随机森林算法和决策树算法来检测FTP暴力破解和POP3暴力破解,详细代码可以参考: https://github.com/traviszeng/MLWithWebSecurity 决策树算法 决策树表现了对象属性和
  3. 所属分类:其它

    • 发布日期:2020-12-25
    • 文件大小:161792
    • 提供者:weixin_38678498
  1. Python中的heapq模块源码详析

  2. 起步 这是一个相当实用的内置模块,但是很多人竟然不知道他的存在——笔者也是今天偶然看到的,哎……尽管如此,还是改变不了这个模块好用的事实 heapq 模块实现了适用于Python列表的最小堆排序算法。 堆是一个树状的数据结构,其中的子节点都与父母排序顺序关系。因为堆排序中的树是满二叉树,因此可以用列表来表示树的结构,使得元素 N 的子元素位于 2N + 1 和 2N + 2 的位置(对于从零开始的索引)。 本文内容将分为三个部分,第一个部分简单介绍 heapq 模块的使用;第二部分回顾堆排序
  3. 所属分类:其它

    • 发布日期:2020-12-25
    • 文件大小:177152
    • 提供者:weixin_38680625
  1. python二叉树的实现实例

  2. 树的定义树是一种重要的非线性数据结构,直观地看,它是数据元素(在树中称为结点)按分支关系组织起来的结构,很象自然界中的树那样。树结构在客观世界中广泛存在,如人类社会的族谱和各种社会组织机构都可用树形象表示。树在计算机领域中也得到广泛应用,如在编译源程序时,可用树表示源程序的语法结构。又如在数据库系统中,树型结构也是信息的重要组织形式之一。一切具有层次关系的问题都可用树来描述。树结构的特点是:它的每一个结点都可以有不止一个直接后继,除根结点外的所有结点都有且只有一个直接前驱。树的递归定义如下:(1
  3. 所属分类:其它

    • 发布日期:2020-12-24
    • 文件大小:46080
    • 提供者:weixin_38633157
  1. 浅析AST抽象语法树及Python代码实现

  2. 在计算机科学中,抽象语法树(abstract syntax tree或者缩写为AST),或者语法树(syntax tree),是源代码的抽象语法结构的树状表现形式,这里特指编程语言的源代码。树上的每个节点都表示源代码中的一种结构。之所以说语法是“抽象”的,是因为这里的语法并不会表示出真实语法中出现的每个细节。比如,嵌套括号被隐含在树的结构中,并没有以节点的形式呈现;而类似于if-condition-then这样的条件跳转语句,可以使用带有两个分支的节点来表示。 和抽象语法树相对的是具体语法树(c
  3. 所属分类:其它

    • 发布日期:2020-12-24
    • 文件大小:54272
    • 提供者:weixin_38725902
  1. Python实现堆排序的方法详解

  2. 本文实例讲述了Python实现堆排序的方法。分享给大家供大家参考,具体如下: 堆排序作是基本排序方法的一种,类似于合并排序而不像插入排序,它的运行时间为O(nlogn),像插入排序而不像合并排序,它是一种原地排序算法,除了输入数组以外只占用常数个元素空间。 堆(定义):(二叉)堆数据结构是一个数组对象,可以视为一棵完全二叉树。如果根结点的值大于(小于)其它所有结点,并且它的左右子树也满足这样的性质,那么这个堆就是大(小)根堆。 我们假设某个堆由数组A表示,A[1]为树的根,给定某个结点的下标i,
  3. 所属分类:其它

    • 发布日期:2020-12-24
    • 文件大小:71680
    • 提供者:weixin_38656462
  1. Python机器学习之决策树算法

  2. 一、决策树原理 决策树是用样本的属性作为结点,用属性的取值作为分支的树结构。 决策树的根结点是所有样本中信息量最大的属性。树的中间结点是该结点为根的子树所包含的样本子集中信息量最大的属性。决策树的叶结点是样本的类别值。决策树是一种知识表示形式,它是对所有样本数据的高度概括决策树能准确地识别所有样本的类别,也能有效地识别新样本的类别。  决策树算法ID3的基本思想: 首先找出最有判别力的属性,把样例分成多个子集,每个子集又选择最有判别力的属性进行划分,一直进行到所有子集仅包含同一类型的数据为
  3. 所属分类:其它

    • 发布日期:2020-12-24
    • 文件大小:144384
    • 提供者:weixin_38719475
  1. python机器学习之贝叶斯分类

  2. 一、贝叶斯分类介绍 贝叶斯分类器是一个统计分类器。它们能够预测类别所属的概率,如:一个数据对象属于某个类别的概率。贝叶斯分类器是基于贝叶斯定理而构造出来的。对分类方法进行比较的有关研究结果表明:简单贝叶斯分类器(称为基本贝叶斯分类器)在分类性能上与决策树和神经网络都是可比的。在处理大规模数据库时,贝叶斯分类器已表现出较高的分类准确性和运算性能。基本贝叶斯分类器假设一个指定类别中各属性的取值是相互独立的。这一假设也被称为:类别条件独立,它可以帮助有效减少在构造贝叶斯分类器时所需要进行的计算。 二、
  3. 所属分类:其它

    • 发布日期:2020-12-24
    • 文件大小:196608
    • 提供者:weixin_38565628
  1. Python决策树之基于信息增益的特征选择示例

  2. 本文实例讲述了Python决策树之基于信息增益的特征选择。分享给大家供大家参考,具体如下: 基于信息增益的特征选取是一种广泛使用在决策树(decision tree)分类算法中用到的特征选取。该特征选择的方法是通过计算每个特征值划分数据集获得信息增益,通过比较信息增益的大小选取合适的特征值。 一、定义 1.1 熵 信息的期望值,可理解为数据集的无序度,熵的值越大,表示数据越无序,公式如下: 其中H表示该数据集的熵值, pi表示类别i的概率, 若所有数据集只有一个类别,那么pi=1,H=0。因此
  3. 所属分类:其它

    • 发布日期:2020-12-24
    • 文件大小:60416
    • 提供者:weixin_38695471
  1. python中树与树的表示知识点总结

  2. 一、什么是树 客观世界中许多事物存在层次关系 人类社会家谱社会组织结构图书信息管理 其中,人类社会家谱如下图所示: 通过上述所说的分层次组织,能够使我们在数据的管理上有更高的效率!那么,对于数据管理的基本操作——查找,我们如何实现有效率的查找呢? 二、查找 查找:根据某个给定关键字K,从集合R中找出关键字与K相同的记录 静态查找:集合中记录是固定的,即对集合的操作没有插入和删除,只有查找 动态查找:集合中记录是动态变化的,即对集合的操作既有查找,还可能发生插入和删除(动态查找不在我们考虑范围内
  3. 所属分类:其它

    • 发布日期:2020-12-26
    • 文件大小:1048576
    • 提供者:weixin_38747144
  1. 数据结构之伸展树详解

  2. 1、 概述 二叉查找树(Binary Search Tree,也叫二叉排序树,即Binary Sort Tree)能够支持多种动态集合操作,它可以用来表示有序集合、建立索引等,因而在实际应用中,二叉排序树是一种非常重要的数据结构。 从算法复杂度角度考虑,我们知道,作用于二叉查找树上的基本操作(如查找,插入等)的时间复杂度与树的高度成正比。对一个含n个节点的完全二叉树,这些操作的最坏情况运行时间为O(log n)。但如果因为频繁的删除和插入操作,导致树退化成一个n个节点的线性链(此时即为一个单链表
  3. 所属分类:其它

    • 发布日期:2020-12-26
    • 文件大小:125952
    • 提供者:weixin_38613173
« 12 3 4 5 »