点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - pytorch实现线性拟合方式
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
pytorch实现线性拟合方式
今天小编就为大家分享一篇pytorch实现线性拟合方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
所属分类:
其它
发布日期:2020-09-18
文件大小:49152
提供者:
weixin_38605188
pytorch实现线性拟合方式
一维线性拟合 数据为y=4x+5加上噪音 结果: import numpy as np from mpl_toolkits.mplot3d import Axes3D from matplotlib import pyplot as plt from torch.autograd import Variable import torch from torch import nn X = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) Y
所属分类:
其它
发布日期:2020-12-23
文件大小:50176
提供者:
weixin_38685694
PyTorch搭建多项式回归模型(三)
PyTorch基础入门三:PyTorch搭建多项式回归模型 1)理论简介 对于一般的线性回归模型,由于该函数拟合出来的是一条直线,所以精度欠佳,我们可以考虑多项式回归来拟合更多的模型。所谓多项式回归,其本质也是线性回归。也就是说,我们采取的方法是,提高每个属性的次数来增加维度数。比如,请看下面这样的例子: 如果我们想要拟合方程: 对于输入变量和输出值,我们只需要增加其平方项、三次方项系数即可。所以,我们可以设置如下参数方程: 可以看到,上述方程与线性回归方程并没有本质区别。所以我们可以采用
所属分类:
其它
发布日期:2021-01-01
文件大小:79872
提供者:
weixin_38693753
pytorch实现task3——过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶
过拟合、欠拟合及解决方案在之前自己已经使用较多较熟练,故跳过。 梯度消失、梯度爆炸 深度模型有关数值稳定性的典型问题是消失(vanishing)和爆炸(explosion)。 当神经网络的层数较多时,模型的数值稳定性容易变差。 在神经网络中,通常需要随机初始化模型参数。随机初始化模型参数的方法有很多。在线性回归的简洁实现中,我们使用torch.nn.init.normal_()使模型net的权重参数采用正态分布的随机初始化方式。不过,PyTorch中nn.Module的模块参数都采取了较为合理的
所属分类:
其它
发布日期:2021-01-06
文件大小:74752
提供者:
weixin_38690739