您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 《动手学深度学习——卷积神经网络、LeNet、卷积神经网络进阶》笔记

  2. 动手学深度学习:卷积神经网络,LeNet,卷积神经网络进阶 卷积神经网络基础 目录: 1、卷积神经网络的基础概念 2、卷积层和池化层 3、填充、步幅、输入通道和输出通道 4、卷积层的简洁实现 5、池化层的简洁实现 1、卷积神经网络的基础概念 最常见的二维卷积层,常用于处理图像数据。 二维互相关运算 二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:135168
    • 提供者:weixin_38630571
  1. 《动手学——卷积神经网络进阶》笔记

  2. 深度卷积神经网络(AlexNet) LeNet: 在大的真实数据集上的表现并不尽如⼈意。 1.神经网络计算复杂。 2.还没有⼤量深⼊研究参数初始化和⾮凸优化算法等诸多领域。 两派特征提取的观点: 机器学习的特征提取:手工定义的特征提取函数 神经网络的特征提取:通过学习得到数据的多级表征,并逐级表⽰越来越抽象的概念或模式。 AlexNet 首次证明了学习到的特征可以超越⼿⼯设计的特征,从而⼀举打破计算机视觉研究的前状。 特征: 8层变换,其中有5层卷积和2层全连接隐藏层,以及1个全连接输出层。
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:392192
    • 提供者:weixin_38752628
  1. 《动手学深度学习》pytorch版笔记2

  2. 《动手学深度学习》pytorch版笔记2 Task3 过拟合、欠拟合及其解决方案 这部分内容比较简单,写下问题吧,再挖几个坑 1.模型复杂度如何改变,三阶到一阶等 2.L2范数正则化为什么是权重衰减的一种方式? 梯度消失,梯度爆炸 1.初始化过程 2.标签偏移的概念 3.数据处理过程 循环神经网络进阶 GRU,LSTM中的门结构实现起来还挺复杂的,有空再自己实现一遍吧。另外深度循环神经网络貌似叫多层循环神经网络,印象中一般不会堆叠很多层,有空再研究一下吧 Task4 机器翻译及相关技术 机器翻
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:114688
    • 提供者:weixin_38686677
  1. PyTorch版《动手学深度学习》学习笔记 Task.4

  2. 有效长度 def SequenceMask(X, X_len,value=0): maxlen = X.size(1) mask = torch.arange(maxlen)[None, :].to(X_len.device) < X_len[:, None] X[~mask]=value return X 在seq2seq模型中,解码器只能隐式地从编码器的最终状态中选择相应的信息。然而,注意力机制可以将这种选择过程显式地建模。 unsqueeze()函数
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:31744
    • 提供者:weixin_38695773
  1. 《动手学深度学习》——笔记2

  2. 第二次打卡内容 Task1 过拟合欠拟合,梯度消失,爆炸,LSTM,GRU Tsak2 机器翻译,Seq2Seq, Transformer Task3 卷积神经网络基础和进阶,leNet 过拟合与欠拟合 过拟合:泛化误差高于训练误差,原因是模型过于复杂或者训练数据集比较小。当模型过于复杂时,可以简化模型参数或者加入L2正则化对参数进行惩罚,也可以采用丢弃法泛化误差不会随着训练数据集里的样本数量增加儿增大,所以通常选择大一些的训练数据集。 欠拟合:无法得到较低的训练误差。原因是训练数据集不够或者模
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:364544
    • 提供者:weixin_38537689
  1. 《动手学深度学习——机器翻译及相关技术,注意力机制与seq2seq模型,Transformer》笔记

  2. 动手学深度学习:机器翻译及相关技术,注意力机制与seq2seq模型,Transformer 初次学习机器翻译相关,把课程的概念题都记录一下。 目录: 1、机器翻译及相关技术 2、注意力机制与seq2seq模型 3、Transformer 1、机器翻译以及相关技术 1、机器翻译以及相关技术 1、关于Sequence to Sequence模型说法错误的是: A 训练时decoder每个单元输出得到的单词作为下一个单元的输入单词。 B 预测时decoder每个单元输出得到的单词作为下一个单元的输入单
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:363520
    • 提供者:weixin_38659789