立体区域卷积神经网络(Stereo R-CNN)算法具有准确、高效的特点,在一定场景下的检测性能较好,但对于远景目标的检测仍有一定的提升空间。为了提升双目视觉算法的车辆检测精度,提出一种改进的Stereo R-CNN算法。该算法将确定性网络(DetNet)作为骨干网络,以增强网络对远景目标的检测;针对左右目视图的潜在关键点,建立了左右视图关键点一致性损失函数,以提高选取潜在关键点的位置精度,进而提高车辆的检测准确性。在KITTI数据集上的实验结果表明,本算法的性能优于Stereo R-CNN,在