使用神经网络设计微波器件时,经常用到神经网络逆向模型。对于复杂的器件输入输出关系,直接逆向建模方法无法满足精度的要求,而其他精度可以满足要求的逆建模方法又具有结构复杂、计算量大等缺点,提出一种新颖的设计微波器件的逆建模方法。该方法只需建立神经网络正向模型,并在保持其权值不变的基础上,通过自适应调节最速下降法学习速率更新正模型的输入参数,使模型输出与理想输出误差达到最小,实现逆模型的功能。此方法没有单独建立逆模型,却能实现逆模型的功能,因此比其他方法简单很多。自适应学习速率的引入进一步改善了模型的