您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. Datawhale 组队学习打卡营 任务15:卷积神经网络进阶

  2. 目录 深度卷积神经网络(AlexNet) 1. AlexNet 2.载入数据集 3. 训练 使用重复元素的网络(VGG) 1. VGG11的简单实现 ⽹络中的⽹络(NiN) GoogLeNet 1. GoogLeNet模型 . . 深度卷积神经网络(AlexNet) LeNet: 在大的真实数据集上的表现并不尽如⼈意。 1.神经网络计算复杂。 2.还没有⼤量深⼊研究参数初始化和⾮凸优化算法等诸多领域。 机器学习的特征提取:手工定义的特征提取函数 神经网络的特征提取:通过学习得到数据的多级表征,并
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:372736
    • 提供者:weixin_38630853
  1. AlexNet、VGG11、NiN、GoogLeNet等网络的Pytorch实现

  2. 目录AlexNetAlexNet摘要AlexNet代码VGGVGG摘要VGG的优缺点代码NiNNiN摘要GoogLeNetGoogLeNet完整结构 AlexNet AlexNet摘要 由于受到计算机性能的影响,虽然LeNet在图像分类中取得了较好的成绩,但是并没有引起很多的关注。 知道2012年,Alex等人提出的AlexNet网络在ImageNet大赛上以远超第二名的成绩夺冠,卷积神经网络乃至深度学习重新引起了广泛的关注 AlexNet是在LeNet的基础上加深了网络的结构,学习更丰富更高维
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:373760
    • 提供者:weixin_38571544
  1. CNN_classification_feature_extraction:PyTorch中的CNN模型用于分类和特征提取-源码

  2. CNN_classification_feature_extraction 该存储库是pytorch中用于分类和特征提取的CNN的实现。 Pytorch预训练的模型已被用于其解释。 该代码支持数据并行性和多GPU,提早停止和类权重。 此外,您可以选择加载预训练的权重(在ImageNet数据集上进行训练)或使用随机权重从头开始训练。 预训练的模型结构在最后一层有1000个节点。 此代码将所有模型的最后一层修改为可与每个数据集兼容。 可以使用以下模型: 'resnet18', 'resne
  3. 所属分类:其它

    • 发布日期:2021-02-16
    • 文件大小:19456
    • 提供者:weixin_42152298