点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 动手学深度学习Task03-Task05
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
动手学深度学习Task03-Task05
过拟合、欠拟合及其解决方案 过拟合和欠拟合 一类是模型无法得到较低的训练误差,我们将这一现象称作欠拟合(underfitting); 另一类是模型的训练误差远小于它在测试数据集上的误差,我们称该现象为过拟合(overfitting)。 L2 范数正则化(regularization) L2 范数正则化在模型原损失函数基础上添加L2范数惩罚项,从而得到训练所需要最小化的函数。L2范数惩罚项指的是模型权重参数每个元素的平方和与一个正的常数的乘积。以线性回归中的线性回归损失函数为例 其中 w1,w
所属分类:
其它
发布日期:2021-01-07
文件大小:840704
提供者:
weixin_38685882
《动手学深度学习》第二次打卡-学习小队
一、学习任务: Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶 Task04:机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer Task05:卷积神经网络基础;leNet;卷积神经网络进阶 二、学习要点 2.1 过拟合、欠拟合及其解决方案 过拟合:太过贴近于训练数据的特征了,在训练集上表现非常优秀,近乎完美的预测/区分了所有的数据,但是在新的测试集上却表现平平 欠拟合:样本不够或者算法不精确,测试样本特性没有学到,不具泛化性,拿到新样本后
所属分类:
其它
发布日期:2021-01-06
文件大小:512000
提供者:
weixin_38613154
动手学深度学习实现DAY-2
节选自“ElitesAI·动手学深度学习PyTorch版” Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶(1天) Task04:机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer(1天) Task05:卷积神经网络基础;leNet;卷积神经网络进阶(1天) 过拟合、欠拟合及其解决方案 过拟合、欠拟合的概念 权重衰减 丢弃法 模型选择、过拟合和欠拟合 训练误差和泛化误差 在解释上述现象之前,我们需要区分训练误差(training err
所属分类:
其它
发布日期:2021-01-06
文件大小:1048576
提供者:
weixin_38586279
【Pytorch】动手学深度学习(二)
学习安排如下: Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶(1天) Task04:机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer(1天) Task05:卷积神经网络基础;leNet;卷积神经网络进阶(1天) Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶(1天) 梯度消失部分,主要是协变量偏移、标签偏移、概念偏移三个概念,第一次接触; 循环神经网络以及过拟合部分比较容易理解; Task04:机器翻译及
所属分类:
其它
发布日期:2021-01-06
文件大小:51200
提供者:
weixin_38717359
动手学深度学习打卡之二。
第二次打卡内容(2月15日-18日) Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶(1天) Task04:机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer(1天) Task05:卷积神经网络基础;leNet;卷积神经网络进阶(1天) 感觉内容比较多啦,终于看完了。。 下面附上一些学习中查到的资料。 Deep Learning(深度学习)学习笔记整理系列之(一) b站上动手学深度学习 开学前要学完哦!!加油!! 作者:poppy917
所属分类:
其它
发布日期:2021-01-20
文件大小:28672
提供者:
weixin_38506835
《动手学深度学习》Task03-Task05
过拟合、欠拟合及其解决方案 训练误差:模型在训练数据集上表现出的误差。 泛化误差:模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似——机器学习模型应关注降低泛化误差。 损失函数 (1)平方损失函数 (2)交叉熵损失函数(CrossEntropy Loss)——度量两个概率分布间的差异性,在机器学习中表示为样本的真实分布和模型所预测的分布之间的差异,反复训练使预测分布接近真实分布。 交叉熵公式: 其中p为真实概率分布,q为预测概率分布。交叉熵在分类问题中常常与so
所属分类:
其它
发布日期:2021-01-20
文件大小:519168
提供者:
weixin_38699492