您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 梯度海量视频内容搜索系统

  2. 1 系统概述 随处可见的视频监控,无非就是摄像头不停地抓拍录像。然而,一旦须要检索视频中的特定目标,人们面对的往往是在成千上万个小时的海量视频中大海捞针,传统上须要投入的人力和时间,简直让人不敢想象,也很不现实。因此,如何通过计算机程序快速从海量视频中搜索特定目标,已经成为当前视频检索和视频侦查迫切须要解决的问题。 当前市场存在的视频侦查系统,普遍仅仅是依赖于传统局限的“帧差法”、“背景建模法”、“颜色分类法”等,从视频中检测所有运动目标,开发出的系统大多停留在“视频摘要”、“视频浓缩”、“拌
  3. 所属分类:C++

    • 发布日期:2015-07-26
    • 文件大小:4194304
    • 提供者:ruixin_1981
  1. 基于卷积神经网络的车牌照字符识别研究

  2. 基于卷积神经网络的车牌照字符识别研究310 第十二届全国图象图形学学术会议 以充分利用人的经验来获取模式特征以及神经网 来正确识别所有样本;Uc4层是网络的输出层即识 终分类能力来识别字符,特征提取必须能反应整 个字符的特征,才能达到较高的识别率;后者则 别层,显示网络最终的模式识别结果。 省去特征抽取,将整个字符直接作为神经网络的 差异提取层Uc的输出姐式(1)所示 输入。这种方式虽然在一定程度上增加了神经网 络结构的复杂度,但是网络的抗干扰性能和识别 n(n,)=max{(-)∑a()l(n
  3. 所属分类:机器学习

    • 发布日期:2019-04-19
    • 文件大小:274432
    • 提供者:suiyu_eran
  1. 煤矸智能分选的机器视觉识别方法与优化

  2. 煤矸图像的在线准确快速识别是煤矸智能分选的关键,深度卷积神经网络能够解决这一问题。以实际生产状态下采集的煤与矸石图像为训练与测试样本,基于ResNet等经典网络与SqueezeNet等先进轻量级网络建立了煤矸图像识别模型,分析了各模型的训练收敛情况。基于k-means++判断模型中不同卷积核所提取特征的相似程度,基于模型剪枝技术对相似度高的卷积核进行裁剪,实现了识别模型的优化与压缩。以识别精度、模型规模和模型运算复杂度为评价指标,定量衡量了压缩前后各模型的测试性能。分析了压缩后的模型对煤矸难、易
  3. 所属分类:其它

    • 发布日期:2020-06-10
    • 文件大小:1048576
    • 提供者:weixin_38680308
  1. 图神经网络的泛化与表示的局限

  2. 我们讨论关于图神经网络(GNNs)的两个基本问题。首先,我们证明了几个重要的图属性是不能由完全依赖于局部信息的GNN计算的。这样的GNN包括标准的消息传递模型,以及更强大的空间变体,利用本地图结构(例如,通过消息的相对方向,或本地端口排序)来区分每个节点的邻居。
  3. 所属分类:机器学习

    • 发布日期:2020-06-24
    • 文件大小:369664
    • 提供者:syp_net
  1. Pytorch学习第二次打卡

  2. Pytorch学习第二次打卡 目录 文章目录Pytorch学习第二次打卡目录过拟合、欠拟合及其解决方案欠拟合过拟合解决方法梯度消失,梯度爆炸卷积神经网络卷积层池化层常见卷积网络 过拟合、欠拟合及其解决方案 欠拟合 模型无法得到较低的训练误差,我们将这一现象称作欠拟合(underfitting); 线性函数拟合,如图: 过拟合 另一类是模型的训练误差远小于它在测试数据集上的误差,我们称该现象为过拟合(overfitting)。训练样本不足,如下图: 给定训练数据集,模型复杂度和误差之间的关系:
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:101376
    • 提供者:weixin_38658568
  1. nlp中的实体关系抽取方法总结

  2. Q1:与联合抽取对比,Pipeline方法有哪些缺点?Q2:NER除了LSTM+CRF,还有哪些解码方式?如何解决嵌套实体问题?Q3:Pipeline中的关系分类有哪些常用方法?如何应用弱监督和预训练机制?怎么解决高复杂度问题、进行one-pass关系分类?Q4:什么是关系重叠问题?Q5:联合抽取难点在哪里?联合抽取总体上有哪些方法?各有哪些缺点?Q6:介绍基于共享参数的联合抽取方法?Q7:介绍基于联合解码的联合抽取方法?Q8:实体关系抽取的前沿技术和挑战有哪些?如何解决低资源和复杂样本下的实体
  3. 所属分类:其它

    • 发布日期:2021-02-24
    • 文件大小:1048576
    • 提供者:weixin_38618819
  1. 基于图结构的恶意代码同源性分析

  2. 恶意代码检测和同源性分析一直是恶意代码分析领域的研究热点。从恶意代码提取的API调用图,能够有效表示恶意代码的行为信息,但由于求解子图同构问题的算法复杂度较高,使基于图结构特征的恶意代码分析效率较低。为此,提出了利用卷积神经网络对恶意代码API调用图进行处理的方法。通过选择关键节点,以关键节点邻域构建感知野,使图结构数据转换为卷积神经网络能够处理的结构。通过对8个家族的恶意样本进行学习和测试,实验结果表明,恶意代码同源性分析的准确率达到93%,并且针对恶意代码检测的准确率达到96%。
  3. 所属分类:其它

    • 发布日期:2021-01-14
    • 文件大小:1048576
    • 提供者:weixin_38701725