您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 语音识别技术文章.rar

  2. 第一部分 基本理论 第2章 听觉机理和汉语语音基础 2. 1 概述 2.2 听觉机理和心理 2.2.1 语音听觉器官的生理结构 2.2.2 语音听觉的心理 2.3 发音的生理机构与过程 2.4 汉语语音基本特性 2.4. 1 元音和辅音 2.4.2 声母和韵母 2.4.3 音调(字调) 2.4.4 音节(字)构成 2.4.5 汉语的波形特征 2.4.6 音的频谱特性 2.4.7 辅音的频谱特性 2.4.8 汉语语音的韵律特征 2.5 小结 参考文献 第3章 语音信号处理方法--时域处理 3.1
  3. 所属分类:其它

    • 发布日期:2011-05-12
    • 文件大小:5242880
    • 提供者:wangjunhui1984
  1. 贝叶斯网络工具箱(Matlab工具包)

  2. 创建你的第一个贝叶斯网络 手工创建一个模型 从一个文件加载一个模型 使用 GUI 创建一个模型 推断 处理边缘分布 处理联合分布 虚拟证据 最或然率解释 条件概率分布 列表(多项式)节点 Noisy-or 节点 其它(噪音)确定性节点 Softmax(多项式 分对数)节点 神经网络节点 根节点 高斯节点 广义线性模型节点 分类 / 回归树节点 其它连续分布 CPD 类型摘要 模型举例 高斯混合模型 PCA、ICA等 专家系统的混合 专家系统的分等级混合 QMR 条件高斯模型 其它混合模型 参数
  3. 所属分类:其它

    • 发布日期:2011-07-12
    • 文件大小:4194304
    • 提供者:leaf1984zh
  1. 贝叶斯网络工具箱(MATLAB工具箱)

  2. 创建你的第一个贝叶斯网络 手工创建一个模型 从一个文件加载一个模型 使用 GUI 创建一个模型 推断 处理边缘分布 处理联合分布 虚拟证据 最或然率解释 条件概率分布 列表(多项式)节点 Noisy-or 节点 其它(噪音)确定性节点 Softmax(多项式 分对数)节点 神经网络节点 根节点 高斯节点 广义线性模型节点 分类 / 回归树节点 其它连续分布 CPD 类型摘要 模型举例 高斯混合模型 PCA、ICA等 专家系统的混合 专家系统的分等级混合 QMR 条件高斯模型 其它混合模型 参数
  3. 所属分类:其它

    • 发布日期:2016-04-28
    • 文件大小:4194304
    • 提供者:u010861059
  1. 统计学习课程练习(matlab)

  2. 1.熟悉Matlab内置线性规划函数的使用 2.对Iris数据集中的数据求取协方差和相关性系数矩阵。并对该数据集做KL变换。 3.随机产生100组数据,每组数据有25个点,数据点为函数sin(2*pi*x)加上高斯噪声,使用Ridge回归对不同的lambda值进行7阶多项式拟合。 4.实现感知机的原始形式算法和对偶形式,证明数据可分性 5.实现一个朴素贝叶斯分类器,并使用课堂中的数据测试,最后加入拉普拉斯平滑,查看输出有什么变化。 6.使用3 中产生的数据,使用CART方法生成一个回归树。 7
  3. 所属分类:讲义

    • 发布日期:2017-12-03
    • 文件大小:4194304
    • 提供者:u012525636
  1. 数据运营思维导图

  2. 数据运营 作用&意义 知错能改,善莫大焉 —错在哪里,数据分析告诉你 运筹帷幄,决胜千里 —怎么做好“运筹”,数据分析告诉你 以往鉴来,未卜先知 —怎么发现历史的规律以预测未来,数据分析告诉你 工作思维 对业务的透彻理解是数据分析的前提 数据分析是精细化运营,要建立起体系化思维(金字塔思维) 自上而下 目标—维度拆解—数据分析模型—发现问题—优化策略 自下而上 异常数据 影响因素 影响因素与问题数据之间的相关关系 原因 优化策略 数据化运营7大经典思路 以目标为导向,学会数据拆分 细分到极致
  3. 所属分类:互联网

    • 发布日期:2018-04-26
    • 文件大小:68157440
    • 提供者:zzwin1006
  1. 神经网络与deep learning 学习与实践,多层前馈神经网络与神经网络的实现

  2. 构建一个至少含有1-2 层隐藏层的神经网络模型,解决手写的0-9 十个手写 数字的识别问题。神经网络模型构建过程中需要注意的几点: (1)数据集采用MNIST 阿拉伯数字手写体数据集。 (2)模型输入层的节点个数的设计。输入层的节点数目应该与输入的手写 体图片的大小相等。MNIST 手写体数据集中手写阿拉伯数字的图像为28×28 的 方形图。 (3)每一个隐藏层的网络节点数的设计。应该遵循特征提取与降维相统一 的原则。 (4)输出层的节点数。因为识别任务是0-9 的十个手写数字,所以输出层 应
  3. 所属分类:深度学习

    • 发布日期:2018-09-18
    • 文件大小:5120
    • 提供者:alice9236
  1. 2019数据运营思维导图

  2. 数据运营 作用&意义 知错能改,善莫大焉 —错在哪里,数据分析告诉你 运筹帷幄,决胜千里 —怎么做好“运筹”,数据分析告诉你 以往鉴来,未卜先知 —怎么发现历史的规律以预测未来,数据分析告诉你 工作思维 对业务的透彻理解是数据分析的前提 数据分析是精细化运营,要建立起体系化思维(金字塔思维) 自上而下 目标—维度拆解—数据分析模型—发现问题—优化策略 自下而上 异常数据 影响因素 影响因素与问题数据之间的相关关系 原因 优化策略 数据化运营7大经典思路 以目标为导向,学会数据拆分 细分到极致
  3. 所属分类:Java

    • 发布日期:2019-03-29
    • 文件大小:15728640
    • 提供者:qq_36826498
  1. Graph Matching Networks for Learning the Similarity of Graph Structured Objects

  2. 近日,DeepMind 和谷歌联合进行了一项研究,该研究提出了一种执行相似性学习的新型强大模型——图匹配网络(GMN),性能优于 GNN 和 GCN 模型。该论文已被 ICML 2019 接收。 DeepMind 和谷歌的这项新研究聚焦检索和匹配图结构对象这一极具挑战性的问题,做出了两个重要贡献。 首先,研究者展示了如何训练图神经网络(GNN),使之生成可在向量空间中执行高效相似性推理的图嵌入。其次,研究者提出了新型图匹配网络模型(GMN),该模型以一对图作为输入,通过基于跨图注意力的新型匹配
  3. 所属分类:机器学习

    • 发布日期:2019-05-07
    • 文件大小:1048576
    • 提供者:pierian_d
  1. 图卷积相关ppt下载.zip

  2. 图卷积相关ppt下载 通过图结构数据中部分有标签的节点数据对卷积神经网络结构模型训练,使网络模型对其余无标签的数据进行进一步分类。
  3. 所属分类:深度学习

    • 发布日期:2019-08-07
    • 文件大小:29360128
    • 提供者:yyl424525
  1. 基于节点重要性分配的网络分类算法

  2. 基于节点重要性分配的网络分类算法,曾地,鄂海红,网络表示学习是将网络节点的内容特征和结构特征结合起来,映射到低维连续向量上的一种学习方法。近年来,端到端图卷积神经网络GCN
  3. 所属分类:其它

    • 发布日期:2020-03-09
    • 文件大小:429056
    • 提供者:weixin_38682242
  1. 基于BP神经网络模型的国家脆弱性问题的求解

  2. 随着人类社会的进步和发展,环境对一个国家的影响不容小觑,其中气候变化对人类生活方式产生深远意义和影响,进而改变国家的脆弱性,本文基于人工智能理论构建了一个国家脆弱性评价模型并利用相关系数法讨论气候变化如何影响区域的不稳定性,发现气候变化对区域稳定性有着举足轻重的作用。问题重述 1.1问题背景 候变化通过对区域稳定性产生影响,进而改变国家的脆弱性,当它与薄弱的政府 治理和社会分裂相结合时,可以引发一系列的暴力恶性事件,通常沿着潜在的民族和政 治分歧发展。早在20世纪90年代,这一概念就已经为一些主
  3. 所属分类:其它

    • 发布日期:2019-03-15
    • 文件大小:1048576
    • 提供者:zrg_hzr_1
  1. 图神经网络构建代码

  2. # GPF ## 一、GPF(Graph Processing Flow):利用图神经网络处理问题的一般化流程 1、图节点预表示:利用NE框架,直接获得全图每个节点的Embedding; 2、正负样本采样:(1)单节点样本;(2)节点对样本; 3、抽取封闭子图:可做类化处理,建立一种通用图数据结构; 4、子图特征融合:预表示、节点特征、全局特征、边特征; 5、网络配置:可以是图输入、图输出的网络;也可以是图输入,分类/聚类结果输出的网络; 6、训练和测试; ## 二、主要文件: 1、gr
  3. 所属分类:深度学习

    • 发布日期:2019-03-04
    • 文件大小:121856
    • 提供者:jinmaodao1990
  1. 理解图卷积网络的节点分类

  2. 在过去的十年中,神经网络取得了巨大的成功。但是,只能使用常规或欧几里得数据来实现神经网络的早期变体,而现实世界中的许多数据都具有非欧几里得的底层图形结构。数据结构的不规则性导致了图神经网络的最新发展。在过去的几年中,正在开发图神经网络的各种变体,其中之一就是图卷积网络(GCN)。GCN也被视为基本的图神经网络变体之一。 在本文中,我们将更深入地研究由Thomas Kipf和Max Welling开发的图卷积网络。我还将在使用NetworkX构建第一个图形时给出一些非常基本的示例。到本文结尾,我
  3. 所属分类:深度学习

    • 发布日期:2020-08-30
    • 文件大小:3072
    • 提供者:qq_28368377
  1. ggnn.tensorflow:选通图神经网络的Tensorflow实现用于源代码分类-tensorflow source code

  2. 门控图神经网络(GGNN)的Tensorflow实现,用于源代码分类 这是门控图神经网络(GGNN)的Tensorflow实现,如Y. Li,D.Tarlow,M.Brockschmidt和R.Zemel在论文《 )中所述。 缩短培训时间并加快收敛速度​​的技巧: 存储桶:将具有相似大小的批处理图放在一起,而不是随机混洗和批处理。 对于小图,请使用密集图表示;对于大图,请使用稀疏图表示。 我们根据的论文的详细信息,将文件解析为图形表示形式。 有关为方法名称预测实现的版本,请参阅此存储库
  3. 所属分类:其它

    • 发布日期:2021-03-24
    • 文件大小:96468992
    • 提供者:weixin_42116921
  1. RHGNN:通过PyTorch中的强化学习进行的自适应双曲图卷积神经网络-源码

  2. PyTorch中的RAHGCN 1.概述 该存储库是PyTorch中通过强化学习(RAHGCN)实现的自适应双曲图卷积神经网络。 下游任务包括: 链接预测( lp ) 节点分类( nc ) 2.设定 2.1下载代码 首先从Github下载源代码。 git clone gitgithub.com:fuxingcheng/RHGNN.git" cd rahgcn 2.2启动虚拟环境 我们建议在虚拟环境中设置我们的项目。 您可以选择conda或virtualenv来创建和管理虚拟环境。 如果
  3. 所属分类:其它

    • 发布日期:2021-02-17
    • 文件大小:6291456
    • 提供者:weixin_42129300
  1. cabam-graph-generation:无标度,属性和类分类图生成-源码

  2. 无标度,属性和类分类图生成 该存储库包含在KDD MLG 2020上发表的论文“无标度,属性和类分类图生成以促进图神经网络的自省”的代码。为清楚起见: CABAM Simulation Examples.ipynb :生成了具有各种需求的图形的几个示例,它们的分类性质,如本文中讨论的理论和经验量的说明,以及给出图形和分配的节点标签的示例类条件特征生成。 Dataset Summaries.ipynb :用于为本文提供的现有GNN基准生成数据集统计信息的驱动程序。 cabam_utils.p
  3. 所属分类:其它

    • 发布日期:2021-02-12
    • 文件大小:23068672
    • 提供者:weixin_42112894
  1. SimGNN:“ SimGNN:快速图相似度计算的神经网络方法”(WSDM 2019)的PyTorch实现-源码

  2. 模拟神经网络 ⠀ SimGNN的PyTorch实现:一种用于快速图相似度计算的神经网络方法(WSDM 2019) 。 抽象 图相似度搜索是最重要的基于图的应用程序之一,例如,查找与查询化合物最相似的化合物。 图相似度/距离计算,例如图编辑距离(GED)和最大公共子图(MCS),是图相似度搜索和许多其他应用程序的核心操作,但实际上计算起来非常昂贵。 受神经网络方法最近在几种图形应用(例如节点或图形分类)中取得成功的启发,我们提出了一种新颖的基于神经网络的方法来解决这一经典而具有挑战性的图形问题
  3. 所属分类:其它

    • 发布日期:2021-02-06
    • 文件大小:2097152
    • 提供者:weixin_42116791
  1. spektral:具有Keras和Tensorflow 2的图神经网络-源码

  2. 欢迎来到Spektral Spektral是一个基于Keras API和TensorFlow 2的用于图深度学习的Python库。该项目的主要目标是提供一个简单而灵活的框架来创建图神经网络(GNN)。 您可以使用Spektral对社交网络的用户进行分类,预测分子特性,使用GAN生成新图形,聚类节点,预测链接以及图形描述数据的任何其他任务。 Spektral实现了一些最流行的图深度学习层,包括: 和许多其他(请参阅)。 您还可以找到,包括: 全局池 Spektral还包括许多实用程序,用于
  3. 所属分类:其它

    • 发布日期:2021-02-05
    • 文件大小:218112
    • 提供者:weixin_42123456
  1. 基于迁移学习和深度卷积神经网络的乳腺肿瘤诊断系统

  2. 乳腺肿瘤计算机辅助诊断(CAD)系统在医学检测和诊断中的应用日益重要。为了区分核磁共振图像(MRI)中肿瘤与非肿瘤,利用深度学习和迁移学习方法,设计了一种新型乳腺肿瘤CAD系统:1)对数据集进行不平衡处理和数据增强;2)在MRI数据集上,利用卷积神经网络(CNN)提取CNN特征,并利用相同的支持向量机分类器,计算每层CNN的特征图的分类F1分数,选取分类性能最高的一层作为微调节点,其后维度较低层为连接新网络节点;3)在选取的网络接入节点,连接新设计的两层全连接层组成新的网络,利用迁移学习,对新网
  3. 所属分类:其它

    • 发布日期:2021-01-27
    • 文件大小:7340032
    • 提供者:weixin_38686542
  1. numpy实现神经网络反向传播算法的步骤

  2. 一、任务 实现一个4 层的全连接网络实现二分类任务,网络输入节点数为2,隐藏层的节点数设计为:25,50,25,输出层2 个节点,分别表示属于类别1 的概率和类别2 的概率,如图所示。我们并没有采用Softmax 函数将网络输出概率值之和进行约束,而是直接利用均方差误差函数计算与One-hot 编码的真实标签之间的误差,所有的网络激活函数全部采用Sigmoid 函数,这些设计都是为了能直接利用梯度推导公式。 二、数据集 通过scikit-learn 库提供的便捷工具生成2000 个线性不可
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:288768
    • 提供者:weixin_38722193
« 12 »