为了提高遥感图像语义分割的效果和分类精度,设计了一种结合ResNet18网络预训练模型的双通道图像特征提取网络。将多重图像特征图进行拼接,融合后的特征图具有更强的特征表达能力。同时,采用批标准化层和带有位置索引的最大池化方法进一步优化网络结构,提升地表目标物的分类准确率。通过实验,将所提方法与多种神经网络方法进行准确率和Kappa系数比较。结果显示,所提的网络结构可以在小数据量样本下取得90.68%的总体准确率,Kappa系数达到了0.8595。相比其他方法,所提算法取得了更好的语义分割效果,并