您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. drost2010CVPR中文翻译版.pdf

  2. Model Globally, Match Locally: Efficient and Robust 3D Object Recognition 中文翻译 ;原网页为:http://campar.in.tum.de/pub/drost2010CVPR/drost2010CVPR.pdfHash table I1. n A (m1,m2) F i.11 m;, (Key to (ms, m6) F1=m2 hash table 图2.(a)两个定向点的点对特征F.分量F1被设置为点F2和F3与法
  3. 所属分类:机器学习

    • 发布日期:2019-07-16
    • 文件大小:1048576
    • 提供者:qq_28250697
  1. 《安防+AI 人工智能工程化白皮书》.pdf

  2. 『安防+AI 人工智能工程化白皮书』集合了中科院自动化所、浙江 宇视科技有限公司的技术专家及行业专家的研究成果、实践经验。本报告从当前 人工智能技术与产业发展的背景、智慧安防生态圈、智慧安防典型应用、智慧安 防规模化应用存在的问题,以及智慧安防未来趋势等五个维度,系统梳理总结了 当前安防+AI 的发展现状,尤其重点分析指出了智慧安防领域存在的八大限制性 因素,以及智慧安防的八大新的发展趋势,供学术界及实业界的学者、专家参考。第四章智慧安防规模应用的八大限制性因素 24 4.1成本高昂 25 4.
  3. 所属分类:机器学习

    • 发布日期:2019-10-20
    • 文件大小:4194304
    • 提供者:yutong_zhou
  1. 蒸发过程的解耦控制仿真实验平台.pdf

  2. 蒸发过程的解耦控制仿真实验平台pdf,蒸发过程的解耦控制仿真实验平台第21卷第l8期 009年9月 系统仿真学报 Sep.2009 curri+ u 采用如下的自逅应辨识算法 (1)X(t-l)e(t) T -Orp: cp Ir LoCx2-3 1) 1-X(t-1)X(t-1) OHF PHF CH (t-1)表示t-1时刻参数的基于强制循环蒸发系统 QHF PHe=QDx2+2PF 的非线性模型的估计 令输出变量n1=xy2=x2,并将上述几式分别带入式 如果e(l)>4△ (1)(
  3. 所属分类:其它

    • 发布日期:2019-10-08
    • 文件大小:973824
    • 提供者:weixin_38744153
  1. 《动手学深度学习》pytorch版笔记2

  2. 《动手学深度学习》pytorch版笔记2 Task3 过拟合、欠拟合及其解决方案 这部分内容比较简单,写下问题吧,再挖几个坑 1.模型复杂度如何改变,三阶到一阶等 2.L2范数正则化为什么是权重衰减的一种方式? 梯度消失,梯度爆炸 1.初始化过程 2.标签偏移的概念 3.数据处理过程 循环神经网络进阶 GRU,LSTM中的门结构实现起来还挺复杂的,有空再自己实现一遍吧。另外深度循环神经网络貌似叫多层循环神经网络,印象中一般不会堆叠很多层,有空再研究一下吧 Task4 机器翻译及相关技术 机器翻
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:114688
    • 提供者:weixin_38686677
  1. 《动手学深度学习:文本分类;数据增强;模型微调》

  2. 文本情感分类 文本分类是自然语言处理的一个常见任务,它把一段不定长的文本序列变换为文本的类别。本节关注它的一个子问题:使用文本情感分类来分析文本作者的情绪。这个问题也叫情感分析,并有着广泛的应用。 同搜索近义词和类比词一样,文本分类也属于词嵌入的下游应用。在本节中,我们将应用预训练的词向量和含多个隐藏层的双向循环神经网络与卷积神经网络,来判断一段不定长的文本序列中包含的是正面还是负面的情绪。后续内容将从以下几个方面展开: 文本情感分类数据集 使用循环神经网络进行情感分类 使用卷积神经网络进行情感
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:34816
    • 提供者:weixin_38692969
  1. 伯禹《动手学深度学习》打卡博客:Task03+Task04

  2. 量太大了,我先挑几个我感兴趣的学一下,漏下的等有空再补上了 文章目录一、循环神经网络二、GRU(gated recurrent unit)三、LSTM(长短期记忆) 一、循环神经网络 参考博客:零基础入门深度学习(5) – 循环神经网络 1.循环神经网络最大的用处就是处理序列的信息,即前面和后面的输入是有关系的,比如理解一句话的意思,以及处理视频 2.语言模型:给定一句话前面的成分,预测接下来最有可能的一个词是什么 3.下面是一个简单的RNN模型示意图,它由输入层、隐藏层和输出层组成 4.全
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:260096
    • 提供者:weixin_38659646
  1. keras_ LSTM 层和 GRU 层

  2. 6.2.2 理解 LSTM 层和 GRU 层 参考: https://blog.csdn.net/qq_30614345/article/details/98714874 6.2.4 小结 现在你已经学会了以下内容。 ‰ 循环神经网络(RNN)的概念及其工作原理。 ‰ 长短期记忆(LSTM)是什么,为什么它在长序列上的效果要好于普通 RNN。 ‰ 如何使用 Keras 的 RNN 层来处理序列数据。 接下来,我们将介绍 RNN 几个更高级的功能,这可以帮你有效利用深度学习序列模型 6.2. 2 
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:101376
    • 提供者:weixin_38676851
  1. Assignment1-源码

  2. 1.型号 1.1反向传播(BP)神经网络模型 BP神经网络模型是由输入层,隐藏层和输出层组成的三层前馈网络。每层包含几个断开的神经元节点,相邻节点根据一定的权重相连。信息传输的方向是从输入层到隐藏层再到输出层。在输入层和隐藏层之间存在转移矩阵,在隐藏层和输出层之间存在转移矩阵。如果实际输出与预期输出之间的差不能满足要求的误差,则将误差值沿网络路径逐层反馈,并校正每一层的连接权重和阈值。 1.2人工蜂群算法的BP神经网络模型优化 人工蜂群(ABC)算法的灵感来自于蜂的智能行为。在ABC算法中,
  3. 所属分类:其它

    • 发布日期:2021-03-20
    • 文件大小:5242880
    • 提供者:weixin_42137539
  1. 具有上采样模块的DenseNet,用于识别图像中的文本

  2. 卷积递归神经网络(CRNN)在OCR的研究中取得了巨大的成功。 但是现有的深度模型通常在池化操作中应用下采样,以通过丢弃一些特征信息来减小特征的大小,这可能会导致丢失占用率较小的相关字符。 而且,循环模块中的所有隐藏层单元都需要在循环层中连接,这可能导致沉重的计算负担。 在本文中,我们尝试使用密集卷积网络(DenseNet)替代CRNN的卷积网络来连接和组合多个功能,从而潜在地改善结果。 另外,我们使用上采样功能构造一个上采样块,以减少池化阶段下采样的负面影响,并在一定程度上恢复丢失的信息。 因
  3. 所属分类:其它

    • 发布日期:2021-03-02
    • 文件大小:1048576
    • 提供者:weixin_38607864
  1. 循环神经网络的几个模型

  2. GRU循环神经网络 RNN存在的问题:梯度较容易出现衰减或爆炸(BPTT) ⻔控循环神经⽹络:捕捉时间序列中时间步距离较⼤的依赖关系 RNN: GRU: Rt=σ(XtWxr+Ht−1Whr+br) Zt=σ(XtWxz+Ht−1Whz+bz) H˜t=tanh(XtWxh+(Rt⊙Ht−1)Whh+bh) Ht=Zt⊙Ht−1+(1−Zt)⊙H˜t • 重置⻔有助于捕捉时间序列⾥短期的依赖关系; • 更新⻔有助于捕捉时间序列⾥⻓期的依赖关系。 LSTM 长短期记忆long short-te
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:152576
    • 提供者:weixin_38599412
  1. 循环神经网络经典模型

  2. 详细地介绍了经典的RNN、RNN几个重要变体,以及Seq2Seq模型、Attention机制。 #一、从单层网络谈起 在学习RNN之前,首先要了解一下最基本的单层网络,它的结构如图: #二、经典的RNN结构(N vs N) 如: 自然语言处理问题。x1可以看做是第一个单词,x2可以看做是第二个单词,依次类推。 语音处理。此时,x1、x2、x3……是每帧的声音信号。 时间序列问题。例如每天的股票价格等等 序列形的数据就不太好用原始的神经网络处理了。为了建模序列问题,RNN引入了隐状态h(hid
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:331776
    • 提供者:weixin_38714532
  1. Sequence to Sequence模型理解

  2. 借鉴博客:几张图彻底搞定Seq2Seq Sequence to Sequence模型由两部分组成:Encoder和Decoder。在机器翻译过程中,假设要将汉语翻译成英语,首先,我们需要两个词典,一个是汉语的词语与数字(index)的一一对应的词典,另一个是英语单词与数字(index)的一一对应的词典,这样,就可以由词语得到数字,也可以由数字得到词语。 1.Encoder部分:对于输入的一句汉语,将其切割成汉语词语,通过查汉语词典得到词语对应的数字,将每个数字转换为一个固定长度的向量,作为循环
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:100352
    • 提供者:weixin_38691319