您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. BP神经网络和混沌神经网络

  2. 是实现BP神经网络和混沌神经网络的matlab程序,但是没有调用神经网络工具箱。
  3. 所属分类:其它

    • 发布日期:2011-12-10
    • 文件大小:50176
    • 提供者:clmngu2011ngu
  1. 数据挖掘论文合集-242篇(part1)

  2. EIS 环境下的数据挖掘技术的研究.caj FCC油品质量指标智能监测系统的数据挖掘与修正技术.caj IDSS 中数据仓库和数据挖掘的研究与实现.caj InternetWeb数据挖掘研究现状及最新进展.caj Internet数据挖掘原理及实现.caj Min-Max模糊神经网络的应用研究.pdf OLAP与数据挖掘一体化模型的分析与讨论.caj OLAP和数据挖掘技术在Web日志上的应用.caj ON-LINE REDUCING MACHINING ERRORS IN BORING OP
  3. 所属分类:其它

    • 发布日期:2009-01-13
    • 文件大小:10485760
    • 提供者:night_furry
  1. 数据挖掘论文合集-242篇(part2)

  2. EIS 环境下的数据挖掘技术的研究.caj FCC油品质量指标智能监测系统的数据挖掘与修正技术.caj IDSS 中数据仓库和数据挖掘的研究与实现.caj InternetWeb数据挖掘研究现状及最新进展.caj Internet数据挖掘原理及实现.caj Min-Max模糊神经网络的应用研究.pdf OLAP与数据挖掘一体化模型的分析与讨论.caj OLAP和数据挖掘技术在Web日志上的应用.caj ON-LINE REDUCING MACHINING ERRORS IN BORING OP
  3. 所属分类:其它

    • 发布日期:2009-01-13
    • 文件大小:10485760
    • 提供者:mathlf2015
  1. 数据挖掘论文合集-242篇(part3)

  2. EIS 环境下的数据挖掘技术的研究.caj FCC油品质量指标智能监测系统的数据挖掘与修正技术.caj IDSS 中数据仓库和数据挖掘的研究与实现.caj InternetWeb数据挖掘研究现状及最新进展.caj Internet数据挖掘原理及实现.caj Min-Max模糊神经网络的应用研究.pdf OLAP与数据挖掘一体化模型的分析与讨论.caj OLAP和数据挖掘技术在Web日志上的应用.caj ON-LINE REDUCING MACHINING ERRORS IN BORING OP
  3. 所属分类:其它

    • 发布日期:2009-01-13
    • 文件大小:5242880
    • 提供者:hutingt77
  1. 2018年东三省建模一等奖

  2. 独立计量区域(DMA)管理是控制城市供水系统水量漏失的有效方法之一,通过对流入或流出这一区域的水量进行计量,对流量,压力的分析来识别泄漏水模式。 针对问题一,利用拉以达法则进行异常值剔除,运用NAR神经网络模型,结合混沌时间序算法优化模型,建立变种神经网络模型,将异常值剔除后的供水量数据输入神经网络训练,得到供水量拟合趋势曲线。查阅各个典型用水模式的相关供水量数据,作出趋势图,并与拟合后的趋势曲线对比,辨识出该DMA分区的典型用水模式为居民生活(小区)模式。 针对问题二,参考国际水协制定的漏失
  3. 所属分类:专业指导

    • 发布日期:2018-08-25
    • 文件大小:2097152
    • 提供者:qq_41629564
  1. 并行混沌神经网络建模方法应用研究

  2. 针对开关磁阻电动机的非线性特点及其现有建模方法存在初始网络权值参数随机给定和易于陷入局部最小点的缺点,提出了一种采用并行优化混沌BP神经网络的建模方法。该方法首先利用混沌系统对神经网络权值向量、阈值向量进行初始优化,然后利用BP神经网络的Levenberg-Marquardt算法进行收敛训练,如果陷入局部最小点则再次使用并行混沌搜索进一步优化模型,使模型具有精度高、速度快的特点。模型训练和开关磁阻电动机调速系统动态仿真结果表明,采用该方法建立的模型运行平稳,系统动态性能好,响应速度快。
  3. 所属分类:其它

    • 发布日期:2020-05-13
    • 文件大小:759808
    • 提供者:weixin_38607552
  1. 基于改进果蝇优化BP神经网络的冲击地压预测

  2. 针对煤矿开采过程中存在非线性、强耦合性等特点导致的动力灾害难以预测的问题,引入一种候选解的线性生成机制(LGMS)、混沌搜索、粒子群算法(PSO)和模拟退火算法(SA)修正果蝇算法(IFOA),利用改进后的果蝇优化算法良好的搜索全局最优解的能力,自适应地调整BP网络的权值和阈值,建立了煤岩冲击地压灾害预测模型。以唐山开滦煤矿样本数据为例进行仿真验证,结果表明其鲁棒性和测量精度明显提高,且网络具有较强的收敛性能和优化能力。
  3. 所属分类:其它

    • 发布日期:2020-05-06
    • 文件大小:889856
    • 提供者:weixin_38693506
  1. 基于CPSO-BP神经网络的冲击地压预测

  2. 针对预测冲击地压的传统方法存在的弊端,提出了一种基于混沌(Chaos)优化粒子群的BP神经网络算法。该算法将混沌、粒子群、BP神经网络结合起来,通过混沌粒子群算法寻优得到BP神经网络的最优权值和阈值初始值,然后进行网络训练和测试。该算法对冲击地压的预测取得了较好的效果。
  3. 所属分类:其它

    • 发布日期:2020-04-28
    • 文件大小:234496
    • 提供者:weixin_38535808
  1. 自适应粒子群算法和混沌理论的BP神经网络在水质评价中的应用

  2. 为克服传统水质评价方法的不足,提出了一种结合粒子群优化(PSO),混沌理论,自适应策略和反向传播人工神经网络(BP ANN)进行评价的模型。中国渭河的水质 提出了一种具有自适应惯性权重和通过logistic函数调整混沌学习因子的改进PSO算法,并将其用于优化BP神经网络的网络参数。 平均绝对偏差(AAD),预测均方根误差(RMSEP)和平方相关系数的值分别为0.0061、0.0163和0.9903。 与BP ANN,PSO BP ANN等其他方法相比,该模型显示了最优的预测性能,具有较高的精度和
  3. 所属分类:其它

    • 发布日期:2020-06-04
    • 文件大小:1048576
    • 提供者:weixin_38714509
  1. 基于LVQ-CPSO-BP算法的煤体瓦斯渗透率预测方法研究

  2. 针对BP神经网络算法对煤体瓦斯渗透率预测精度低问题,筛选出影响预测精度的5个主要因素——1个宏观因素(煤层埋深)和4个微观因素(有效应力、温度、瓦斯压力、抗压强度),提出一种基于学习向量量化神经网络(LVQ)分类、混沌粒子群算法(CPSO)优化、BP神经网络预测的LVQ-CPSO-BP煤体瓦斯渗透率预测方法。从宏观上确定临界值将煤层埋深划分为2层;基于有效应力与瓦斯渗透率之间存在拐点关系,从微观上确定拐点值将有效应力划分为2段;采用LVQ将4个微观样本参数依据拐点特征进行分类识别,采用BP神经网
  3. 所属分类:其它

    • 发布日期:2020-05-30
    • 文件大小:752640
    • 提供者:weixin_38502428
  1. 基于IQPSO-BP算法的煤矿瓦斯涌出量预测

  2. 针对煤矿回采工作面瓦斯涌出的非线性特征,提出一种基于改进量子粒子群优化BP神经网络(IQPSO-BP)的瓦斯涌出量预测方法。鉴于量子粒子群算法的遍历能力有限,采用混沌序列来初始化量子的初始角位置。同时,采用凸函数调整惯性权重,以平衡算法的全局勘探和局部开发能力。并依此来优化BP神经网络的权值、阈值参数,进而建立了瓦斯涌出量预测模型。试验结果表明,IQPSO-BP算法具有较强的泛化能力及较高的预测精度,可有效用于煤矿瓦斯涌出量的预测。
  3. 所属分类:其它

    • 发布日期:2020-07-14
    • 文件大小:228352
    • 提供者:weixin_38656064
  1. 基于混沌优化神经网络的冲击地压预测模型

  2. 为了改进BP神经网络用于冲击地压预测的精度和泛化能力,利用BP算法和混沌优化算法优缺点的互补性,构建了一种组合式优化预测模型(COBP).将该模型应用于重庆砚石台煤矿冲击地压的预测,结果显示,该模型既利用混沌优化帮助BP算法克服了易陷入局部极值的缺点,又利用BP算法克服了基本混沌优化局部搜索能力有限和有时不能搜索到全局最优的缺陷.
  3. 所属分类:其它

    • 发布日期:2020-07-18
    • 文件大小:1013760
    • 提供者:weixin_38722874
  1. 刀具寿命预测相关论文.zip

  2. 为了改善刀具寿命预测的精准度,文章在已有的 PSO-BP 神经网络算法中引入混沌理论,提出了一种基于混沌粒子群算法优化 BP 神经网络( CPSO-BP 神经网络) 的刀具寿命预测方法。该方法采用粒子群算法优化网络权值和阈值,通过混沌扰动更新粒子的位置。CPSO-BP 神经网络算法既避免了 BP 神经网络存在的收敛速度慢、易陷入局部最优的缺点,又改善了全局搜索能力,同时,降低了粒子群优化算法造成早熟收敛或停滞的可能性。仿真结果表明: 与已有的 PSO-BP 神经网络算法相比,该文的 CPSO-B
  3. 所属分类:制造

    • 发布日期:2020-10-10
    • 文件大小:35651584
    • 提供者:weixin_43967360
  1. 基于CLBP、改进KPCA和RF的牛肉大理石纹评级

  2. 为进一步提高牛肉大理石纹评级的正确率,提出了基于完整局部二值模式(Completed Local Binary Pattern,CLBP)、改进核主成分分析(Kernel Principal Component Analysis,KPCA)和随机森林(Random Forests,RF)的牛肉大理石纹评级方法。首先,利用CLBP提取牛肉大理石纹图像的纹理特征;其次,采用混沌蜂群算法对KPCA的核参数进行优化,使KPCA的降维效果和特征提取达到最优,获得表征牛肉大理石纹样本图像的特征向量;最后,使
  3. 所属分类:其它

    • 发布日期:2020-10-17
    • 文件大小:486400
    • 提供者:weixin_38611508
  1. 基于混沌蚁群的神经网络速度辨识器研究

  2. 近年来,由于神经网络的研究取得了长足的进展,基于BP神经网络模型的速度辨识方法得到了广泛研究,但其仍存在收敛速度慢、易陷入局部极小值等问题,因此,对神经网络的优化一直是当前的研究热点。本文将混沌引入到蚁群算法(Ant Colony Optimization,ACO)当中,以形成混沌蚁群算法(Chaos Ant Colony Optimization,CACO),从而提高了对于BP神经网络的优化效率和精度,解决了上述问题;同时,也在对异步电机直接转矩控制(DTC)转速辨识的仿真试验中,实现了对电机
  3. 所属分类:其它

    • 发布日期:2020-10-26
    • 文件大小:173056
    • 提供者:weixin_38690407
  1. 通信与网络中的基于混沌蚁群的神经网络速度辨识器研究

  2. 0 引言   近年来,由于神经网络的研究取得了长足的进展,基于BP神经网络模型的速度辨识方法得到了广泛研究,但其仍存在收敛速度慢、易陷入局部极小值等问题,因此,对神经网络的优化一直是当前的研究热点。本文将混沌引入到蚁群算法(Ant Colony Optimization,ACO)当中,以形成混沌蚁群算法(Chaos Ant Colony Optimization,CACO),从而提高了对于BP神经网络的优化效率和精度,解决了上述问题;同时,也在对异步电机直接转矩控制(DTC)转速辨识的仿真试验
  3. 所属分类:其它

    • 发布日期:2020-11-07
    • 文件大小:151552
    • 提供者:weixin_38692836
  1. BP学习算法在CNN发电机建模中应用

  2. 在应用混沌神经网络(CNN)进行同步发电机的建模过程中,对于CNN的学习,网络训练过程的收敛性很难控制。在研究了BP学习算法及其一些改进方法进行人工神经网络训练的轨迹收敛特性后,观测到运用梯度下降动量与自适应学习速率相结合的BP学习算法的神经网络训练轨迹的收敛特性良好。在用基于Aihara混沌神经元构成的3层反馈CNN进行同步发电机建模的应用中,用该BP学习算法对CNN进行了训练。结果表明:用该BP算法进行CNN发电机建模具有学习速度快和均方误差曲线轨迹收敛性好的特点,而且所建立的CNN同步发电
  3. 所属分类:其它

    • 发布日期:2021-01-15
    • 文件大小:1048576
    • 提供者:weixin_38524246
  1. 遗传算法优化BP 神经网络的短时交通流混沌预测

  2. 为了提高BP 神经网络预测模型对混沌时间序列的预测准确性, 提出了一种基于遗传算法优化BP 神经网络 的改进混沌时间序列预测方法. 利用遗传算法优化BP 神经网络的权值和阈值, 然后训练BP 神经网络预测模型以求 得最优解, 并将该预测方法应用到几个典型混沌时间序列和实测短时交通流时间序列进行有效性验证. 仿真结果表 明, 该方法对典型混沌时间序列和短时交通流具有较好的非线性拟合能力和更高的预测准确性.
  3. 所属分类:其它

    • 发布日期:2021-01-14
    • 文件大小:430080
    • 提供者:weixin_38636577
  1. 基于量子粒子群的全参数连分式混沌时间序列预测

  2. 针对传统混沌时间序列预测模型的复杂性、低精度性和低时效性的缺点, 在倒差商连分式基础上提出全参数连分式模型, 并利用量子粒子群优化算法优化模型参数, 将参数优化问题转化为多维空间上的函数优化问题. 以二阶强迫布鲁塞尔振子和三维二次自治广义Lorenz 系统为模型, 通过四阶Runge-Kutta 法产生混沌时间序列, 并利用基于量子粒子群优化算法的全参数连分式、BP 神经网络和RBF 神经网络分别对混沌时间序列进行单步和多步预测. 仿真结果表明, 基于量子粒子群优化算法的全参数连分式结构简单、精
  3. 所属分类:其它

    • 发布日期:2021-01-13
    • 文件大小:357376
    • 提供者:weixin_38729438
  1. 基于相关向量机的短期风速预测模型

  2. 通过对风速的时间序列进行分析,表明该序列具有混沌特性。在此基础上,利用相空间重构理论建立基于相关向量机(RVM)的短期风速预测模型,并对不同的核函数进行分析,选出最优的核函数。与现有的风速预测模型相比,该模型具有高稀疏性、核函数选择灵活等优点。仿真结果表明,与BP神经网络和支持向量机(SVM)模型相比,RVM模型预测精度更高。
  3. 所属分类:其它

    • 发布日期:2021-01-12
    • 文件大小:709632
    • 提供者:weixin_38618094
« 12 »