点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - KNN算法实例需要的数据
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
Java实现的KNN算法示例
主要介绍了Java实现的KNN算法,结合实例形式分析了KNN算法的原理及Java定义与使用KNN算法流程、训练数据相关操作技巧,需要的朋友可以参考下
所属分类:
其它
发布日期:2020-08-27
文件大小:60416
提供者:
weixin_38557935
KNN算法实例需要的数据
KNN算法实例需要的数据
所属分类:
IT管理
发布日期:2017-04-18
文件大小:786432
提供者:
itzym
用python实现k近邻算法的示例代码
K近邻算法(或简称kNN)是易于理解和实现的算法,而且是你解决问题的强大工具。 什么是kNN kNN算法的模型就是整个训练数据集。当需要对一个未知数据实例进行预测时,kNN算法会在训练数据集中搜寻k个最相似实例。对k个最相似实例的属性进行归纳,将其作为对未知实例的预测。 相似性度量依赖于数据类型。对于实数,可以使用欧式距离来计算。其他类型的数据,如分类数据或二进制数据,可以用汉明距离。 对于回归问题,会返回k个最相似实例属性的平均值。对于分类问题,会返回k个最相似实例属性出现最多的属性。 k
所属分类:
其它
发布日期:2020-12-25
文件大小:62464
提供者:
weixin_38695159
使用python实现knn算法
本文实例为大家分享了python实现knn算法的具体代码,供大家参考,具体内容如下 knn算法描述 对需要分类的点依次执行以下操作: 1.计算已知类别数据集中每个点与该点之间的距离 2.按照距离递增顺序排序 3.选取与该点距离最近的k个点 4.确定前k个点所在类别出现的频率 5.返回前k个点出现频率最高的类别作为该点的预测分类 knn算法实现 数据处理 #从文件中读取数据,返回的数据和分类均为二维数组 def loadDataSet(filename): dataSet = [] l
所属分类:
其它
发布日期:2020-12-25
文件大小:70656
提供者:
weixin_38614462
Python实现基于KNN算法的笔迹识别功能详解
本文实例讲述了Python实现基于KNN算法的笔迹识别功能。分享给大家供大家参考,具体如下: 需要用到: Numpy库 Pandas库 手写识别数据 点击此处本站下载。 数据说明: 数据共有785列,第一列为label,剩下的784列数据存储的是灰度图像(0~255)的像素值 28*28=784 KNN(K近邻算法): 从训练集中找到和新数据最接近的K条记录,根据他们的主要分类来决定新数据的类型。 这里的主要分类,可以有不同的判别依据,比如“最多”,“最近邻”,或者是“距离加权”。
所属分类:
其它
发布日期:2020-12-25
文件大小:108544
提供者:
weixin_38608866
python实现kNN算法
kNN(k-nearest neighbor)是一种基本的分类与回归的算法。这里我们先只讨论分类中的kNN算法。 k邻近算法的输入为实例的特征向量,对对应于特征空间中的点;输出为实例的类别,可以取多类,k近邻法是建设给定一个训练数据集,其中的实例类别已定,分类时,对于新的实例,根据其k个最邻近的训练实例的类别,通过多数表决等方式进行预测。所以可以说,k近邻法不具有显示的学习过程。k临近算法实际上是利用训练数据集对特征向量空间进行划分,并作为其分类的“模型” k值的选择,距离的度量和分类决策规
所属分类:
其它
发布日期:2020-12-24
文件大小:98304
提供者:
weixin_38746951
Python机器学习之scikit-learn库中KNN算法的封装与使用方法
本文实例讲述了Python机器学习之scikit-learn库中KNN算法的封装与使用方法。分享给大家供大家参考,具体如下: 1、工具准备,python环境,pycharm 2、在机器学习中,KNN是不需要训练过程的算法,也就是说,输入样例可以直接调用predict预测结果,训练数据集就是模型。当然这里必须将训练数据和训练标签进行拟合才能形成模型。 3、在pycharm中创建新的项目工程,并在项目下新建KNN.py文件。 import numpy as np from math import
所属分类:
其它
发布日期:2021-01-21
文件大小:89088
提供者:
weixin_38658086
机器学习KNN算法之手写数字数字识别
算法简介 手写数字识别是KNN算法一个特别经典的实例,其数据源获取方式有两种,一种是来自MNIST数据集,另一种是从UCI欧文大学机器学习存储库中下载,本文基于后者讲解该例。 基本思想就是利用KNN算法推断出如下图一个32×32的二进制矩阵代表的数字是处于0-9之间哪一个数字。 数据集包括两部分,一部分是训练数据集,共有1934个数据;另一部分是测试数据集,共有946个数据。所有数据命名格式都是统一的,例如数字5的第56个样本——5_56.txt,这样做为了方便提取出样本的真实标签。 数据的
所属分类:
其它
发布日期:2021-01-20
文件大小:205824
提供者:
weixin_38737751