您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 卷积神经网络代码c++

  2. 卷积神经网络lenet-5的实现代码 c++版本
  3. 所属分类:C++

    • 发布日期:2014-09-21
    • 文件大小:10485760
    • 提供者:ck__123
  1. 卷积神经网络

  2. 卷积神经网络的快速发展得益于LeNet-5、Alexnet、ZFNet、VGGNet、GoogleNet、ResNet等不同结构的设计出现。卷积神经网络的结构哟很多种,但是基本机构是相似的,主要包括:卷积层、池化层、激活函数、正则化、全连接层以及损失函数。
  3. 所属分类:讲义

    • 发布日期:2018-03-09
    • 文件大小:5242880
    • 提供者:dongairan
  1. tensorflow实现LeNet-5的卷积神经网络

  2. 里面包含mnist数据集,不用再去下载,程序直接能用。由于model文件夹里有训练好的模型,可以直接跑测试,由于只跑了6000轮训练,不到完整的3W轮,所以只达到了98.8%,你们可以自己训练完一整套,能达到99.*%的准确率。若不满意,那自己调超参数 (初试的指数衰减率 和 每次衰减比率),好了,下次上传迁移学习的代码,下回见,
  3. 所属分类:深度学习

    • 发布日期:2018-03-10
    • 文件大小:134217728
    • 提供者:a3765421
  1. 卷积神经网络lenet-5的c++实现

  2. c++ 实现的lenet-5 , 开发环境是vs2015,打开工程就可以运行,大家可以下MNIST库试试,也希望跟大家学习交流
  3. 所属分类:深度学习

    • 发布日期:2018-02-01
    • 文件大小:375808
    • 提供者:tangqinglin
  1. LeNet-5源代码、mnist_data及论文.rar

  2. LeNet-5出自论文Gradient-Based Learning Applied to Document Recognition,是一种用于手写体字符识别的非常高效的卷积神经网络。 LeNet5源码,带详细注释。 mnist_data及论文 以飨初学者
  3. 所属分类:互联网

    • 发布日期:2020-05-07
    • 文件大小:11534336
    • 提供者:zhaoyunduan1958
  1. LeNet-5结构的卷积神经网络-CNN.zip

  2. 超简明网课的CNN经典代码,实现了LeNet-5结构,相关博文链接可以参考如下:「https://blog.csdn.net/u013684446/article/details/105575942」。代码质量高,下载后直接运行即可
  3. 所属分类:Python

    • 发布日期:2020-04-17
    • 文件大小:17825792
    • 提供者:u013684446
  1. LeNet-5.py

  2. 卷积神经网络LeNet-5的pytorch代码实现,关于详细内容,可以参考博客:https://blog.csdn.net/didi_ya/article/details/108317958
  3. 所属分类:Python

    • 发布日期:2020-09-03
    • 文件大小:5120
    • 提供者:didi_ya
  1. 卷积神经网络在肝包虫病CT图像诊断中的应用

  2. 探讨卷积神经网络(Convonlutional Neural Network,CNN)在肝包虫病CT图像诊断中的应用。选取两种类型的肝包虫病CT图像进行归一化、改进的中值滤波去噪和数据增强等预处理。以LeNet-5模型为基础提出改进的CNN模型CTLeNet,采用正则化策略减少过拟合问题,加入Dropout层减少参数个数,对二分类肝包虫图像进行分类实验,同时通过反卷积实现特征可视化,挖掘疾病潜在特征。结果表明,CTLeNet模型在分类任务中取得了较好的效果,有望通过深度学习方法对肝包虫病提供辅助
  3. 所属分类:其它

    • 发布日期:2020-10-15
    • 文件大小:312320
    • 提供者:weixin_38634037
  1. 卷积神经网络_源代码.rar

  2. 这是我的博客文章:基于深度学习的CIFAR10图像分类 的源代码。 本文实验基于Windows10系统,仿真软件用的是Anaconda下基于python编程的JupyterNotebook编辑器。通过利用Google的深度学习框架Tensorflow,搭建新的卷积网络结构,提出了基于卷积神经网络的CIFAR10图像分类识别算法,主要参照经典的卷积神经网络模型LeNet-5结构,提出新的卷积神经网络结构并对飞机、汽车、鸟类、猫、鹿、狗、蛙类、马、船和卡车10种事物进行分类,该模型构建了一个输入层、
  3. 所属分类:互联网

    • 发布日期:2020-11-28
    • 文件大小:2097152
    • 提供者:weixin_37647148
  1. CNN–LeNet-5原理

  2. LeNet5 by Yann LeCun 简介 LeNet-5结构图 LeNet包含七层 输入层:32*32*1像素的手写数字图片,相当于32*32=1024个神经元 C1层:卷积层,包含具有6个5*5卷积核的卷积层,步长为1,特征图的大小为28*28,神经元的个数为28*28*6=784。参数个数为(5*5+1)*6=156,连接数为156*28*28=122304。 S2层:池化层,max pooling。padding=0,size=2*2,stride=2,输出6张大小为14*14的特
  3. 所属分类:其它

    • 发布日期:2020-12-21
    • 文件大小:1002496
    • 提供者:weixin_38727825
  1. Tensorflow2.0:实战LeNet-5识别MINIST数据集

  2. LeNet-5模型 1990 年代提出的LeNet-5使卷积神经网络在当时成功商用,下图是 LeNet-5 的网络结构图,它接受32 × 32大小的数字、字符图片,这次将LeNet-5模型用来识别MINIST数据集中的数字,并在测试集中计算其识别准确率。 根据上图的网络结构,可以得出下图的模型结构图: 完整代码示例 第一部分:数据集的加载与预处理 import tensorflow as tf from tensorflow import keras from tensorflow.kera
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:177152
    • 提供者:weixin_38666232
  1. 《动手学深度学习——卷积神经网络、LeNet、卷积神经网络进阶》笔记

  2. 动手学深度学习:卷积神经网络,LeNet,卷积神经网络进阶 卷积神经网络基础 目录: 1、卷积神经网络的基础概念 2、卷积层和池化层 3、填充、步幅、输入通道和输出通道 4、卷积层的简洁实现 5、池化层的简洁实现 1、卷积神经网络的基础概念 最常见的二维卷积层,常用于处理图像数据。 二维互相关运算 二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:135168
    • 提供者:weixin_38630571
  1. 《动手学——卷积神经网络进阶》笔记

  2. 深度卷积神经网络(AlexNet) LeNet: 在大的真实数据集上的表现并不尽如⼈意。 1.神经网络计算复杂。 2.还没有⼤量深⼊研究参数初始化和⾮凸优化算法等诸多领域。 两派特征提取的观点: 机器学习的特征提取:手工定义的特征提取函数 神经网络的特征提取:通过学习得到数据的多级表征,并逐级表⽰越来越抽象的概念或模式。 AlexNet 首次证明了学习到的特征可以超越⼿⼯设计的特征,从而⼀举打破计算机视觉研究的前状。 特征: 8层变换,其中有5层卷积和2层全连接隐藏层,以及1个全连接输出层。
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:392192
    • 提供者:weixin_38752628
  1. pytorch task05 卷积神经网络

  2. pytorch task05 卷积神经网络 文章目录pytorch task05 卷积神经网络1.卷积神经网络基础1.1二维卷积层1.2填充和步幅1.3多输入通道和多输出通道1.4卷积层与全连接层的对比1.5池化2 经典模型LeNet-5AlexNetVGGGoogLeNet (Inception)ResNet退化问题残差网络的解决办法 1.卷积神经网络基础 1.1二维卷积层 二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:186368
    • 提供者:weixin_38706455
  1. 小结5:卷积神经网络基础、LeNet、卷积神经网络进阶

  2. 文章目录卷积神经网络基础二维卷积层padding以及stride对特征图影响stridekernel参数LeNetLeNet结构图卷积神经网络进阶AlexNetVGGNiN(network in network)GoogleNet 卷积神经网络基础 本节我们介绍卷积神经网络的基础概念,主要是卷积层和池化层,并解释填充、步幅、输入通道和输出通道的含义。 二维卷积层 本节介绍的是最常见的二维卷积层,常用于处理图像数据。 二维互相关(cross-correlation)运算的输入是一个二维输入数组和一
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:575488
    • 提供者:weixin_38628626
  1. 动手学深度学习PyTorch版–Task4、5–机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer;;卷积神经网络基础;leNet;卷积神经网络进阶

  2. 一.机器翻译及相关技术 机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。 1.Encoder-Decoder encoder:输入到隐藏状态 decoder:隐藏状态到输出 class Encoder(nn.Module): def __init__(self, **kwargs): super(Encoder, self)
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:1048576
    • 提供者:weixin_38674512
  1. 卷积神经网络进阶

  2. 深度卷积神经网络(AlexNet) LeNet: 在大的真实数据集上的表现并不尽如⼈意。 神经网络计算复杂。 还没有⼤量深⼊研究参数初始化和⾮凸优化算法等诸多领域。 机器学习的特征提取:手工定义的特征提取函数 神经网络的特征提取:通过学习得到数据的多级表征,并逐级表⽰越来越抽象的概念或模式。 神经网络发展的限制:数据、硬件 AlexNet 首次证明了学习到的特征可以超越⼿⼯设计的特征,从而⼀举打破计算机视觉研究的前状。 特征: 8层变换,其中有5层卷积和2层全连接隐藏层,以及1个全连接输出层。
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:37888
    • 提供者:weixin_38659648
  1. Task05:卷积神经网络基础+LeNet

  2. 卷积神经网络 感受野 LeNet架构 卷积层 互相关运算与卷积运算 卷积层得名于卷积运算,但卷积层中用到的并非卷积运算而是互相关运算。我们将核数组上下翻转、左右翻转,再与输入数组做互相关运算,这一过程就是卷积运算。由于卷积层的核数组是可学习的,所以使用互相关运算与使用卷积运算并无本质区别。 填充 步幅 多输入通道和多输出通道 卷积层的简洁实现 X = torch.rand(4, 2, 3, 5) print(X.shape) conv2d = nn.Conv2d(in_ch
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:1048576
    • 提供者:weixin_38720653
  1. 动手学 task5 卷积神经网络基础;leNet;卷积神经网络进阶

  2. 卷积神经网络基础 二维卷积层 填充和步幅 我们介绍卷积层的两个超参数,即填充和步幅,它们可以对给定形状的输入和卷积核改变输出形状。 填充 公式: 总的计算公式: 总结: 最后一个公式相比前一个公式没有加1的操作,乍一看公式不同(即什么时候加1什么时候不加1)其时,对第二个公式分解一下,即可归纳出什么时候都需要加1的操作。这样便于记忆) 多输入通道和多输出通道¶ 代码: print(X.shape) conv2d = nn.Conv2d(in_channels=2, out_chann
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:1048576
    • 提供者:weixin_38699352
  1. 《动手学习深度学习》之三:2.卷积神经网络(CNN)进阶-5种模型(打卡2.5)

  2. 卷积神经网络(CNN)进阶 2.LeNet、AlexNet、VGG、NiN、GooLeNet 5种模型 2.1.LeNet 2.1.1.全连接层和卷积层的比较: 使用全连接层的局限性: • 图像在同一列邻近的像素在这个向量中可能相距较远。它们构成的模式可能难以被模型识别。 • 对于大尺寸的输入图像,使用全连接层容易导致模型过大。 使用卷积层的优势: • 卷积层保留输入形状。 • 卷积层通过滑动窗口将同一卷积核与不同位置的输入重复计算,从而避免参数尺寸过大。 2.1.2.LeNet 模型介绍
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:749568
    • 提供者:weixin_38648968
« 12 3 »