您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. MachineLearning-master-python.zip

  2. 属于网络下载资源,感谢原作者的贡献。 ##目录介绍 - **DeepLearning Tutorials** 这个文件夹下包含一些深度学习算法的实现代码,以及具体的应用实例,包含: Keras使用进阶。介绍了怎么保存训练好的CNN模型,怎么将CNN用作特征提取,怎么可视化卷积图。 [keras_usage]介绍了一个简单易用的深度学习框架keras,用经典的Mnist分类问题对该框架的使用进行说明,训练一个CNN,总共不超过30行代码。 将卷积神经网络CNN应用于人脸识别的一个demo,人脸数
  3. 所属分类:专业指导

    • 发布日期:2016-07-04
    • 文件大小:1048576
    • 提供者:qq_33042687
  1. Python实现的KMeans聚类算法实例分析

  2. 主要介绍了Python实现的KMeans聚类算法,结合实例形式较为详细的分析了KMeans聚类算法概念、原理、定义及使用相关操作技巧,需要的朋友可以参考下
  3. 所属分类:其它

    • 发布日期:2020-09-19
    • 文件大小:215040
    • 提供者:weixin_38621897
  1. Python实现的Kmeans++算法实例

  2. 1、从Kmeans说起 Kmeans是一个非常基础的聚类算法,使用了迭代的思想,关于其原理这里不说了。下面说一下如何在matlab中使用kmeans算法。 创建7个二维的数据点:复制代码 代码如下:x=[randn(3,2)*.4;randn(4,2)*.5+ones(4,1)*[4 4]];使用kmeans函数:复制代码 代码如下:class = kmeans(x, 2);x是数据点,x的每一行代表一个数据;2指定要有2个中心点,也就是聚类结果要有2个簇。 class将是一个具有70个元素的列
  3. 所属分类:其它

    • 发布日期:2020-12-23
    • 文件大小:98304
    • 提供者:weixin_38531630
  1. Python实现的KMeans聚类算法实例分析

  2. 本文实例讲述了Python实现的KMeans聚类算法。分享给大家供大家参考,具体如下: 菜鸟一枚,编程初学者,最近想使用Python3实现几个简单的机器学习分析方法,记录一下自己的学习过程。 关于KMeans算法本身就不做介绍了,下面记录一下自己遇到的问题。 一 、关于初始聚类中心的选取 初始聚类中心的选择一般有: (1)随机选取 (2)随机选取样本中一个点作为中心点,在通过这个点选取距离其较大的点作为第二个中心点,以此类推。 (3)使用层次聚类等算法更新出初始聚类中心 我一开始是使用numpy
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:216064
    • 提供者:weixin_38738830