您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. Siamese Recurrent Architectures for Learning Sentence Similarity.pdf

  2. 用最简单的模型、最简单的特征工程做出好效果,追求的就是极致性价比。如果有需要,可以在此基础上做一些模型更改和特征工程,提高表现效果。ture for face verification developed by Chopra, Hadsell, and This forces the LSTm to entirely capture the semantic dif- LeCun(2005), which utilizes symmetric Conv Nets where ferences d
  3. 所属分类:深度学习

    • 发布日期:2019-10-14
    • 文件大小:1048576
    • 提供者:wolegequya
  1. Noisy Networks for Exploration.pdf

  2. 关于Noisy Networks for Exploration dqn的原始论文,适合初学者对深度强化学习Noisy Networks for Exploration dqn的认识和了解Published as a conference paper at ICLR 2018 T is assessed by the action-value function Q defined as Q"(.a)=配 ∑ rR(t, at) (1) where E is the expectation ove
  3. 所属分类:讲义

    • 发布日期:2019-09-02
    • 文件大小:5242880
    • 提供者:m0_37384317
  1. larochelle-metalearning.pdf

  2. 英文版。很好的资源,适合机器学习以及人工智能爱好者。A RESEARCH AGENDA Deep learning successes have required a lot of labeled training data s collecting and labeling such data requires significant human labor practically, is that really how we'll solve Al sCientifically, this
  3. 所属分类:机器学习

    • 发布日期:2019-07-29
    • 文件大小:23068672
    • 提供者:xcmax
  1. Attention Is All You Need.pdf

  2. 谷歌提出的Transformer结构tput Probabilities Softmax Linear Add& Norm Feed orwa Add& Norm Add norm Multi-Head Attention Forward N Add Norm I Add norm Masked Multi-Head Multi-Head Attention Atention Encoding ① Encoding ut Output Embedding Embedding Inputs Ish
  3. 所属分类:深度学习

    • 发布日期:2019-07-13
    • 文件大小:2097152
    • 提供者:weixin_41778389
  1. LISTEN ATTEND AND SPELL A NEURAL NETWORK FOR SPEECH RECOGNITION.pdf

  2. 语音识别LAS结构where d and y, are MLP networks. After training, the a; distribution Table 1: WER comparison on the clean and noisy Google voice is typically very sharp and focuses on only a few frames of h; ci car search task. The CLDNN-hMM system is the s
  3. 所属分类:专业指导

    • 发布日期:2019-07-13
    • 文件大小:647168
    • 提供者:weixin_41778389
  1. NIPS2017-Oriol Vinyals-model vs optimazation meta-learning

  2. ppt框架:元学习定义,与无监督学习的对比,与监督学习的对比,元学习模型分类(基于模型,基于度量,基于优化)与例子,总结,展望
  3. 所属分类:深度学习

    • 发布日期:2020-07-21
    • 文件大小:2097152
    • 提供者:liz_Lee