经典K阶贝叶斯分类模型(KDB)进行属性排序时,仅考虑类变量与决策属性间的直接相关,而忽略以决策属性为条件二者之间的条件相关.针对以上问题,在KDB结构的基础上,以充分表达属性间的依赖信息为原则,强化属性间的依赖关系,提升决策属性对分类的决策表达,利用类变量与决策属性间的条件互信息优化属性次序,融合属性约简策略剔除冗余属性,降低模型结构复杂带来的过拟合风险,根据贪婪搜索策略选择最优属性并构建模型结构.在UCI机器学习数据库中数据集的实验结果表明,该模型相比于KDB而言,具有更好的分类精度和突出的