一点见解,不断学习,欢迎指正
1、自定义loss层作为网络一层加进model,同时该loss的输出作为网络优化的目标函数
from keras.models import Model
import keras.layers as KL
import keras.backend as K
import numpy as np
from keras.utils.vis_utils import plot_model
x_train=np.random.normal(1,1,(100,784))
x
1、Binary Cross Entropy
常用于二分类问题,当然也可以用于多分类问题,通常需要在网络的最后一层添加sigmoid进行配合使用,其期望输出值(target)需要进行one hot编码,另外BCELoss还可以用于多分类问题Multi-label classification.
定义:
For brevity, let x = output, z = target. The binary cross entropy loss is
loss(x, z) = – sum_i (x
1、Binary Cross Entropy
常用于二分类问题,当然也可以用于多分类问题,通常需要在网络的最后一层添加sigmoid进行配合使用,其期望输出值(target)需要进行one hot编码,另外BCELoss还可以用于多分类问题Multi-label classification.
定义:
For brevity, let x = output, z = target. The binary cross entropy loss is
loss(x, z) = – sum_i (x