您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 决策树python实现

  2. 基于python逐步实现Decision Tree(决策树),分为以下几块: 加载数据集 熵的计算 根据最佳分割feature进行数据分割 根据最大信息增益选择最佳分割feature 递归构建决策树 样本分类
  3. 所属分类:Python

    • 发布日期:2014-03-10
    • 文件大小:5120
    • 提供者:abcjennifer
  1. 用Python实现决策树分类算法

  2. 1. 使用Python实现基本的决策树算法; 2. 主要使用pandas的DataFrame实现; 3. 为防止过度拟合,在小于20个记录时,直接选取记录中最多类别; 3. 没有画决策树图
  3. 所属分类:Python

    • 发布日期:2015-06-13
    • 文件大小:2048
    • 提供者:a464357735
  1. 机器学习(决策树)

  2. 运用Python实现了简单了ID3,C4.5的决策树分类,可以简单理解决策树原理和分类效果
  3. 所属分类:专业指导

    • 发布日期:2015-11-03
    • 文件大小:5120
    • 提供者:zx10212029
  1. c4.5基于信息增益比的多分类决策树python实现

  2. c4.5基于信息增益比的多分类决策树python实现,包含数据集,运行结果以字典的形式进行存储
  3. 所属分类:机器学习

    • 发布日期:2017-12-08
    • 文件大小:5120
    • 提供者:qq_26191927
  1. 决策树算法python代码实现

  2. 决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy = 系统的凌乱程度,使用算法ID3, C4.5和C5.0生成树算法使用熵。这一度量是基于信息学理论中熵的概念。 决策树是一种树形结构,其中每个内部节点
  3. 所属分类:机器学习

    • 发布日期:2018-06-01
    • 文件大小:4096
    • 提供者:u010919410
  1. python实现决策树分类算法

  2. python实现机器学习之决策树分类算法,简单易学,而且可直接运行。
  3. 所属分类:机器学习

    • 发布日期:2018-07-23
    • 文件大小:7168
    • 提供者:xiaoxiao_yang77
  1. 决策树分类算法

  2. python实现决策树分类算法 ID3算法 数据挖掘分类算法,完整代码
  3. 所属分类:算法与数据结构

    • 发布日期:2019-03-13
    • 文件大小:820224
    • 提供者:springhammer
  1. 后剪枝决策树分类器python

  2. 这是一个用python实现的决策树分类器,其样本集纯度指标为基尼指数,实现了后剪枝优化算法,有需要请下载
  3. 所属分类:机器学习

    • 发布日期:2020-02-17
    • 文件大小:5120
    • 提供者:qq_43116030
  1. python实现决策树分类算法

  2. 主要为大家详细介绍了python实现决策树分类算法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
  3. 所属分类:其它

    • 发布日期:2020-09-20
    • 文件大小:134144
    • 提供者:weixin_38675815
  1. python实现决策树分类(2)

  2. 主要介绍了python实现决策树分类的相关资料,用于实际的数据分类,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
  3. 所属分类:其它

    • 发布日期:2020-09-20
    • 文件大小:59392
    • 提供者:weixin_38718434
  1. python实现决策树分类

  2. 主要为大家详细介绍了python实现决策树分类的相关资料,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
  3. 所属分类:其它

    • 发布日期:2020-09-20
    • 文件大小:97280
    • 提供者:weixin_38656463
  1. python实现决策树、随机森林的简单原理

  2. 本文申明:此文为学习记录过程,中间多处引用大师讲义和内容。 一、概念 决策树(Decision Tree)是一种简单但是广泛使用的分类器。通过训练数据构建决策树,可以高效的对未知的数据进行分类。决策数有两大优点:1)决策树模型可以读性好,具有描述性,有助于人工分析;2)效率高,决策树只需要一次构建,反复使用,每一次预测的最大计算次数不超过决策树的深度。 看了一遍概念后,我们先从一个简单的案例开始,如下图我们样本: 对于上面的样本数据,根据不同特征值我们最后是选择是否约会,我们先自定义的一个决策
  3. 所属分类:其它

    • 发布日期:2020-12-24
    • 文件大小:185344
    • 提供者:weixin_38526780
  1. 数据挖掘 | [有监督学习——分类] 决策树基本知识及python代码实现——利用sklearn

  2. 利用决策树进行分类,使用了sklearn包。 决策树分类及sklearn实现决策树的定义决策树的组成信息增益python代码实现决策树可视化一些参考 相关文章: 数据挖掘 | [关联规则] 利用apyori库的关联规则python代码实现 数据挖掘 | [有监督学习——分类] 朴素贝叶斯及python代码实现——利用sklearn 数据挖掘 | [无监督学习——聚类] K-means聚类及python代码实现——利用sklearn 数据挖掘 | [无监督学习——聚类] 凝聚层次聚类及pytho
  3. 所属分类:其它

    • 发布日期:2020-12-21
    • 文件大小:178176
    • 提供者:weixin_38536716
  1. Python数据分析(9)—-用决策树进行分类

  2. 在上一篇博文Python数据分析(8)—-用python实现数据分层抽样中,实现了实验数据的抽取,那么在本文中,将用上述抽取到的数据进行实验,也就是用决策树进行分类。 在讲解实际的决策树分类之前,需要介绍一下决策树分类的sklearn中决策树模型参数释义: ''' scikit-learn中有两类决策树,它们均采用优化的CART决策树算法。 (1)回归决策树:DecisionTreeRegressor() (2)分类决策树:DecisionTreeClassifier() ''' from sk
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:105472
    • 提供者:weixin_38515270
  1. 机器学习——基于Bagging的集成学习:随机森林(Random Forest)及python实现

  2. 基于Bagging的集成学习:随机森林的原理及其实现引入Bagging装袋随机森林随机森林分类随机森林回归python实现随机森林分类随机森林回归 引入 “三个臭皮匠赛过诸葛亮”——弱分类器组合成强分类器。 Q1.什么是随机森林? 随机森林顾名思义就是一片森林,其中有各种各样的树,其实,随机森林是基于决策树构成的,一片森林中的每一颗树就是一个决策树。想了解决策树算法详情请戳☞决策树原理及其实现☜ Q2.为什么叫随机森林? 随机森林中“随机”一词主要在于两点:“随机”取样;“随机”抽取特征。 了解
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:238592
    • 提供者:weixin_38663443
  1. python实现连续变量最优分箱详解–CART算法

  2. 关于变量分箱主要分为两大类:有监督型和无监督型 对应的分箱方法: A. 无监督:(1) 等宽 (2) 等频 (3) 聚类 B. 有监督:(1) 卡方分箱法(ChiMerge) (2) ID3、C4.5、CART等单变量决策树算法 (3) 信用评分建模的IV最大化分箱 等 本篇使用python,基于CART算法对连续变量进行最优分箱 由于CART是决策树分类算法,所以相当于是单变量决策树分类。 简单介绍下理论: CART是二叉树,每次仅进行二元分类,对于连续性变量,方法是依次计算相邻两元素值的中位
  3. 所属分类:其它

    • 发布日期:2021-01-02
    • 文件大小:59392
    • 提供者:weixin_38749305
  1. Python实现决策树多分类和回归(Robotnavigation数据)附数据集和结果.zip

  2. Python实现决策树多分类和回归(Robotnavigation数据)附数据集和结果
  3. 所属分类:机器学习

    • 发布日期:2021-03-05
    • 文件大小:772096
    • 提供者:jungle_Liu
  1. python实现决策树分类

  2. 上一篇博客主要介绍了决策树的原理,这篇主要介绍他的实现,代码环境python 3.4,实现的是ID3算法,首先为了后面matplotlib的绘图方便,我把原来的中文数据集变成了英文。 原始数据集: 变化后的数据集在程序代码中体现,这就不截图了 构建决策树的代码如下: #coding :utf-8 ''' 2017.6.25 author :Erin function: decesion tree ID3 ''' import numpy as np import pandas as p
  3. 所属分类:其它

    • 发布日期:2021-01-21
    • 文件大小:96256
    • 提供者:weixin_38716519
  1. python实现决策树分类(2)

  2. 在上一篇文章中,我们已经构建了决策树,接下来可以使用它用于实际的数据分类。在执行数据分类时,需要决策时以及标签向量。程序比较测试数据和决策树上的数值,递归执行直到进入叶子节点。 这篇文章主要使用决策树分类器就行分类,数据集采用UCI数据库中的红酒,白酒数据,主要特征包括12个,主要有非挥发性酸,挥发性酸度, 柠檬酸, 残糖含量,氯化物, 游离二氧化硫, 总二氧化硫,密度, pH,硫酸盐,酒精, 质量等特征。 下面是具体代码的实现: #coding :utf-8 ''' 2017.6.26 au
  3. 所属分类:其它

    • 发布日期:2021-01-21
    • 文件大小:60416
    • 提供者:weixin_38699593
  1. python机器学习算法实训 – (四)实现决策树

  2. 1.什么是决策树 决策树是一种树型结构,其中每个内部结点表示在一个属性上的测试,每个分支代表一个测试输出,每个叶结点代表一种类别。 决策树学习是以实例为基础的归纳学习,通过一系列规则对数据进行分类的过程。 决策树学习采用的是自顶向下的递归方法,其基本思想是以信息熵为度量构造一棵熵值下降最快的树,到叶子节点处的熵值为零,此时每个叶节点中的实例都属于同一类。 简单来说,我们生活中随时会用到这样的判断方法,比如这样: 2.决策树的特点 决策树学习算法的最大优点是,它可以自学习 在学习的过程中,不需要
  3. 所属分类:其它

    • 发布日期:2021-01-21
    • 文件大小:371712
    • 提供者:weixin_38617413
« 12 3 4 »