您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 北大tensorflow公开课笔记

  2. 第一讲 带着大家梳理人工智能领域的基本概念:比如什么是人工智能、什么机器学习、什么是深度学习,他们的发展历史是什么,能用他们做什么。课后,助教会带领大家安装Ubuntu系统、Python解释器 和 Tensorflow环境,把同学们的电脑进行改造,让它变得更专业。 第二讲 串讲python语法:课程将帮同学们在最短的时间内把python语法织成网,为后续课程扫清代码关; 第三讲 讲解Tensorflow的关键词,搭建神经网络:这节课会介绍张量、计算图、会话等概念,并用Python搭建你的第一个
  3. 所属分类:深度学习

    • 发布日期:2018-05-25
    • 文件大小:10181831
    • 提供者:weixin_39711936
  1. python3.x Opencv Toturial

  2. 本书针的读者是高校学生,科研工作者,图像处理爱好者。对于这些 人群,他们往往是带着具体的问题,在苦苦寻找解决方案。为了一个小问 题就让他们去学习 C++ 这么深奥的语言几乎是不可能的。而 Python 的悄 然兴起给他们带来的希望,如果说 C++ 是 tex 的话,那 Python 的易用性 相当于 word。他们可以很快的看懂本书的所有代码,并可以学着使用它们 来解决自己的问题,同时也能拓展自己的视野。别人经常说 Python 不够 快,但是对于上面的这些读者,我相信这不是问题,现在我们日常
  3. 所属分类:Python

    • 发布日期:2018-03-01
    • 文件大小:4194304
    • 提供者:qq_34745295
  1. Python 神经网络练习实例源码.rar

  2. 收集一些Python 神经网络相关的练习源码,注释丰富,是一些学习Python时候自己完成的一个神经网络相关代码,或许对你有参考作用。可完成的功能有:简单神经网络实现自定义损失函数(利润最大化)、计算一个5层神经网络带L2正则化的损失函数,神经网络的优化、模拟神经网络迭代的轮数,动态控制衰减率,简单神经网络实现自定义损失函数,加入学习率的设置(指数衰减),加入L2正则化损失的实现,不包含隐层,获得一层神经网络边上的权重,并将这个权重的L2 正则化损失加入名称为losses的集合里,定义一个
  3. 所属分类:其它

    • 发布日期:2019-07-10
    • 文件大小:5120
    • 提供者:weixin_39840515
  1. OpenCV-Python-Toturial-中文版.pdf

  2. 数字图像处理(第三版)冈萨雷斯,北京大学研究生上课专用ppt课件书虽然挺好的,但是不够全面,不能让读者完全了解 opencv的现状)。而 我翻译的这本书是来源于 OpenCv的官方文档,内容全面,对各种的算 法的描述简单易懂,而且不拘泥于长篇大论的数学推导,非常适合想使用 OpencⅤ解决实际问题的人,对他们来说具体的数学原坦并不重要,重要 是能解决实际问题。 在国内这本书可以说是第一本 Python OpenCV的译作。 4本书的时效性 本书的编写时针对最新的 Opencv3.0的,本版本还没
  3. 所属分类:图像处理

    • 发布日期:2019-07-05
    • 文件大小:5242880
    • 提供者:qq_28005905
  1. arima python

  2. ARIMA模型(英语:AutoregressiveIntegratedMovingAverage model),差分整合移动平均自回归模型,又称整合移动平均自回归模型(移动也可称作滑动),时间序列预测分析方法之一。ARIMA(p,d,q)中,AR是"自回归",p为自回归项数;MA为"滑动平均",q为滑动平均项数,d为使之成为平稳序列所做的差分次数(阶数)。“差分”一词虽未出现在ARIMA的英文名称中,却是关键步骤
  3. 所属分类:算法与数据结构

    • 发布日期:2019-03-23
    • 文件大小:225280
    • 提供者:qz1992
  1. 时间序列分析

  2. python时间序列分析2018/12/7 python时序数据分析-以示例说玥-geek精神-博客园 1.均值 X staticnary series Non-stationary serles Ⅹ是时序数捱的值,t是时间。可以看到左图,数据的均值对于时间轴来说是常量,即数据的均值 不是时间的函数所有它是稳定的;右图随着时间的推移,数捱的值整体趋势是增加的,所有均 值是时间的函数,数据具有趋势,所以是非稳定的 2.方差 X tationary series Non-Stationary ser
  3. 所属分类:算法与数据结构

    • 发布日期:2019-03-05
    • 文件大小:2097152
    • 提供者:vanghoh
  1. Python基于滑动平均思想实现缺失数据填充的方法

  2. 今天小编就为大家分享一篇关于Python基于滑动平均思想实现缺失数据填充的方法,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧
  3. 所属分类:其它

    • 发布日期:2020-09-19
    • 文件大小:47104
    • 提供者:weixin_38713412
  1. 基于Numpy.convolve使用Python实现滑动平均滤波的思路详解

  2. 主要介绍了Python极简实现滑动平均滤波(基于Numpy.convolve)的相关知识,非常不错,具有一定的参考借鉴价值,需要的朋友可以参考下
  3. 所属分类:其它

    • 发布日期:2020-09-19
    • 文件大小:159744
    • 提供者:weixin_38604916
  1. Python实现滑动平均(Moving Average)的例子

  2. 今天小编就为大家分享一篇Python实现滑动平均(Moving Average)的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
  3. 所属分类:其它

    • 发布日期:2020-09-18
    • 文件大小:34816
    • 提供者:weixin_38748556
  1. Python 十种数字滤波器

  2. Python语言 实现 10中数字滤波器;限幅滤波法、中位值滤波法、算术平均滤波法、递推平均滤波法(又称滑动平均滤波法)、中位值平均滤波法(又称防脉冲干扰平均滤波法)、限幅平均滤波法、一阶滞后滤波法、加权递推平均滤波法、消抖滤波法、限幅消抖滤波法
  3. 所属分类:互联网

    • 发布日期:2020-10-23
    • 文件大小:14336
    • 提供者:Wxx_Combo
  1. reinforcement-learning-tutorials:强化学习的基本算法-源码

  2. 写在前面 本项目用于学习RL基础算法,尽量做到: 注释详细 结构清晰 代码结构清晰,主要分为以下几个脚本: env.py用于重建强化学习环境,也可以重新归一化环境,例如给动作加噪声 model.py强化学习算法的基本模型,局部神经网络,演员,评论家等 memory.py保存重放缓冲区,用于off-policy agent.py RL核心算法,某种dqn等,主要包含update和select_action两个方法, main.py运行主函数 params.py保存各种参数 plot.py利用
  3. 所属分类:其它

    • 发布日期:2021-03-12
    • 文件大小:2097152
    • 提供者:weixin_42114580
  1. 基于Numpy.convolve使用Python实现滑动平均滤波的思路详解

  2. ​ 1.滑动平均概念 滑动平均滤波法(又称递推平均滤波法),时把连续取N个采样值看成一个队列 ,队列的长度固定为N ,每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)  把队列中的N个数据进行算术平均运算,就可获得新的滤波结果。N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 优点:  对周期性干扰有良好的抑制作用,平滑度高  适用于高频振荡的系统  缺点:  灵敏度低  对偶然出现的脉冲性干扰的抑制作用较差  不易消除由于脉冲干扰所引起的采
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:159744
    • 提供者:weixin_38686267
  1. Python实现滑动平均(Moving Average)的例子

  2. Python中滑动平均算法(Moving Average)方案: #!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np # 等同于MATLAB中的smooth函数,但是平滑窗口必须为奇数。 # yy = smooth(y) smooths the data in the column vector y .. # The first few elements of yy are given by # yy(1) = y(
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:36864
    • 提供者:weixin_38705699
  1. Python基于滑动平均思想实现缺失数据填充的方法

  2. 在时序数据处理过程中,我们经常会遇到由于现实中的种种原因导致获取的数据缺失的情况,这里的数据缺失不单单是指为‘NaN’的数据,比如在AQI数据中,0是不可能出现的,这时候如果数据中出现了0也就是数据缺失了,最近正好在拿一个污染物的数据在做模型分析,中间就遇到了数据缺失值的问题,数据量本身不大,如果直接对缺失值进行丢弃处理的话会进一步减小数据量,所以这里考虑采用数据填充的方法来实现缺失数据的填充。我做了两个版本其中,第一个版本很简单可以不看,主要是简单实现以下效果。具体实现如下: #!usr/b
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:47104
    • 提供者:weixin_38665122
  1. ARIMA模型 – [SPSS & Python]

  2. 简介:   ARIMA模型:(英语:Autoregressive Integrated Moving Average model),差分整合移动平均自回归模型,又称整合移动平均自回归模型(移动也可称作滑动),是时间序列预测分析方法之一。AR是“自回归”,p为自回归项数;MA为“滑动平均”,q为滑动平均项数,d为使之成为平稳序列所做的差分次数(阶数)。      由于毕业论文要涉及到时间序列的数据(商品的销量)进行建模与分析,主要是对时间序列的数据进行预测,在对数据进行简单的散点图观察时,发现数据
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:77824
    • 提供者:weixin_38622983