您好,欢迎光临本网站![请登录][注册会员]  

人工智能下载列表 第3505页

« 1 2 ... .00 .01 .02 .03 .04 3505.06 .07 .08 .09 .10 ... 4637 »

[机器学习] 卷积神经网络综述

说明: 从1989年LeCun提出第一个真正意义上的卷积神经网络到今天为止,它已经走过了29个年头。自2012年AlexNet网络出现之后,最近6年以来,卷积神经网络得到了急速发展,在很多问题上取得了当前最好的结果,是各种深度学习技术中用途最广泛的一种。在本文中SIGAI将为大家回顾和总结卷积神经网络的整个发展过程。
<sigai_csdn> 在 上传 | 大小:3145728

[机器学习] 理解SVM核函数和参数的作用

说明: 支持向量机(SVM)在很多分类问题上曾经取得了当时最好的性能,使用非线性核的支持向量机可以处理线性不可分的问题。仅仅通过一个简单的核函数映射,就能达到如此好的效果,这让我们觉得有些不可思议。核函数过于抽象,在本文中,SIGAI将通过一组实验来演示核函数的有效性,并解释支持向量机各个参数所起到的作用,让大家对此有一个直观的认识。如果要了解SVM的理论,请阅读我们之前的公众号文章“用一张图理解SVM的脉络”
<sigai_csdn> 在 上传 | 大小:587776

[机器学习] 理解梯度下降法

说明: 最优化问题在机器学习中有非常重要的地位,很多机器学习算法最后都归结为求解最优化问题。在各种最优化算法中,梯度下降法是最简单、最常见的一种,在深度学习的训练中被广为使用。在本文中,SIGAI将为大家系统的讲述梯度下降法的原理和实现细节问题。
<sigai_csdn> 在 上传 | 大小:626688

[机器学习] 机器学习在自动驾驶中的应用-以百度阿波罗平台为例【上】

说明: 自动驾驶是人工智能当前最热门的方向之一,也是未来将对人类生活会产生重大影响的方向。机器学习在自动驾驶中有举足轻重的地位,从环境感知到策略控制,都有它的身影。在本文中,SIGAI将以百度阿波罗平台为例,介绍机器学习在自动驾驶系统中的应用,揭开自动驾驶算法的神秘面纱。
<sigai_csdn> 在 上传 | 大小:885760

[机器学习] 理解牛顿法

说明: 牛顿法是数值优化算法中的大家族,她和她的改进型在很多实际问题中得到了应用。在机器学习中,牛顿法是和梯度下降法地位相当的的主要优化算法。在本文中,SIGAI将为大家深入浅出的系统讲述牛顿法的原理与应用。
<sigai_csdn> 在 上传 | 大小:698368

[机器学习] 行人检测算法

说明: 行人检测是计算机视觉中的经典问题,也是长期以来难以解决的问题。和人脸检测问题相比,由于人体的姿态复杂,变形更大,附着物和遮挡等问题更严重,因此准确的检测处于各种场景下的行人具有很大的难度。在本文中,SIGAI将为大家回顾行人检测算法的发展历程。
<sigai_csdn> 在 上传 | 大小:1048576

[机器学习] HLDA学习笔记

说明: David M.BLEI 这个LDA领域的大牛,对LDA有诸多变形,这一片是将随机过程(stochastic process)用于无参贝叶斯推断上,构造主题层次树。 2012.9.17 刚刚开始学习,掌握了大概内容。 文中采用的方法:在贝叶斯无参推断(BNP)中,先验和后验分布不再受限于参数的分布,而是一般的随机过程。贝叶斯推断过程也不再受限于优先维空间,可以扩展到一般的无限维空间。
<qq_40486106> 在 上传 | 大小:123904

[机器学习] 大话Adaboost算法

说明: AdaBoost算法是一种集成学习(ensemble learning)方法。集成学习是机器学习中的一类方法,它对多个机器学习模型进行组合形成一个精度更高的模型,参与组合的模型称为弱学习器(weak learner)。在预测时使用这些弱学习器模型联合起来进行预测;训练时需要用训练样本集依次训练出这些弱学习器。典型的集成学习算法是随机森林和boosting算法,而AdaBoost算法是boosting算法的一种实现版本。
<sigai_csdn> 在 上传 | 大小:428032

[机器学习] 循环网络综述

说明: 循环神经网络是一种具有记忆功能的神经网络,适合序列数据的建模。它在语音识别、自然语言处理等领域取得了成功。是除卷积神经网络之外深度学习中最常用的一种网络结构。在本文中,SIGAI将和大家一起回顾循环神经网络的发展历程与在各个领域的应用。
<sigai_csdn> 在 上传 | 大小:1048576

[机器学习] 理解决策树

说明: 决策树是最简单的机器学习算法,它易于实现,可解释性强,完全符合人类的直观思维,有着广泛的应用。决策树到底是什么?简单地讲,决策树是一棵二叉或多叉树(如果你对树的概念都不清楚,请先去学习数据结构课程),它对数据的属性进行判断,得到分类或回归结果。预测时,在树的内部节点处用某一属性值(特征向量的某一分量)进行判断,根据判断结果决定进入哪个分支节点,直到到达叶子节点处,得到分类或回归结果。这是一种基于if-then-else规则的有监督学习算法,决策树的这些规则通过训练得到,而不是人工制定的。
<sigai_csdn> 在 上传 | 大小:546816

[深度学习] AlphaGo算法原理概述

说明: AlphaGo算法原理概述,阿尔法围棋(AlphaGo)是第一个击败人类职业围棋选手、第一个战胜围棋世界冠军的人工智能机器人,由谷歌(Google)旗下DeepMind公司戴密斯·哈萨比斯领衔的团队开发
<joeshc> 在 上传 | 大小:2097152

[机器学习] 理解主成分分析法

说明: 主成分分析法 (PCA) 是一种常用的数据分析手段。对于一组不同维度 之间可能存在线性相关关系的数据,PCA 能够把这组数据通过正交变换变 成各个维度之间线性无关的数据。经过 PCA 处理的数据中的各个样本之间 的关系往往更直观,所以它是一种非常常用的数据分析和预处理工具。PCA处理之后的数据各个维度之间是线性无关的,通过剔除方差较小的那些维度上的数据我们可以达到数据降维的目的。在本文中,SIGAI将介绍PCA 的原理、应用以及缺陷。
<sigai_csdn> 在 上传 | 大小:1048576
« 1 2 ... .00 .01 .02 .03 .04 3505.06 .07 .08 .09 .10 ... 4637 »