您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 【学习笔记】动手学深度学习task05

  2. 一、卷积神经网络基础 1.互相关运算 举例二维互相关运算如下: 输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。 卷积核的尺寸通常小于输入数组,卷积核在输入数组上滑动,在每个位置上,卷积核与该位置处的输入子数组按元素相乘并求和,得到输出数组中相应位置的元素。图1展示了一个互相关运算的例子,阴影部分分别是输入的第一个计算区域、核数组以及对应的输出。 互相关运算与卷积运算:卷积层得名于卷积运算,但卷积层中用到的并非卷积
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:512000
    • 提供者:weixin_38732315
  1. 动手学深度学习Pytorch版本学习笔记 Task 05

  2. 1.卷积神经网络基础 卷积其实就是将许多部分的信息进行压缩,在过大维度矩阵的情况下,因为存在过多的信息 第一是为运算上带来了很多麻烦 第二是类似拿着显微镜看一幅画,难以捕捉其整体的信息。通过互相关运算将画拿远,慢慢感受他整体的信息。所以应该在卷积神经网络中把大矩阵缩小多少次,缩小到什么程度应该是个相当关键的问题。只有在能看清具体信息但又能把握整体信息的情况下,才能得到对图像更清楚地把握。 通过感受野这个概念能发现,经过互相关运算或者卷积运算之后的矩阵,应该每个位置都综合了之前感受野中的信息,所以
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:65536
    • 提供者:weixin_38696339
  1. 《动手学深度学习——卷积神经网络、LeNet、卷积神经网络进阶》笔记

  2. 动手学深度学习:卷积神经网络,LeNet,卷积神经网络进阶 卷积神经网络基础 目录: 1、卷积神经网络的基础概念 2、卷积层和池化层 3、填充、步幅、输入通道和输出通道 4、卷积层的简洁实现 5、池化层的简洁实现 1、卷积神经网络的基础概念 最常见的二维卷积层,常用于处理图像数据。 二维互相关运算 二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:135168
    • 提供者:weixin_38630571
  1. 动手学深度学习(五):卷积神经网络

  2. 卷积神经网络基础 卷积神经网络(convolutional neural network)是含有卷积层(convolutional layer)的神经网络。本文中介绍的卷积神经网络均使用最常见的二维卷积层。它有高和宽两个空间维度,常用来处理图像数据。本文中,我们将介绍简单形式的二维卷积层的工作原理。 1、二维互相关运算 虽然卷积层得名于卷积(convolution)运算,但我们通常在卷积层中使用更加直观的互相关(cross-correlation)运算。在二维卷积层中,一个二维输入数组和一个二维
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:101376
    • 提供者:weixin_38653085
  1. 动手学深度学习之卷积神经网络进阶(ModernCNN)

  2. 参考伯禹学习平台《动手学深度学习》课程内容内容撰写的学习笔记 原文链接:https://www.boyuai.com/elites/course/cZu18YmweLv10OeV/lesson/T5r2YnM8A4vZpxPUbCQSyW 感谢伯禹平台,Datawhale,和鲸,AWS给我们提供的免费学习机会!! 总的学习感受:伯禹的课程做的很好,课程非常系统,每个较高级别的课程都会有需要掌握的前续基础知识的介绍,因此很适合本人这种基础较差的同学学习,建议基础较差的同学可以关注伯禹的其他课程:
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:403456
    • 提供者:weixin_38530202
  1. 《动手学——卷积神经网络进阶》笔记

  2. 深度卷积神经网络(AlexNet) LeNet: 在大的真实数据集上的表现并不尽如⼈意。 1.神经网络计算复杂。 2.还没有⼤量深⼊研究参数初始化和⾮凸优化算法等诸多领域。 两派特征提取的观点: 机器学习的特征提取:手工定义的特征提取函数 神经网络的特征提取:通过学习得到数据的多级表征,并逐级表⽰越来越抽象的概念或模式。 AlexNet 首次证明了学习到的特征可以超越⼿⼯设计的特征,从而⼀举打破计算机视觉研究的前状。 特征: 8层变换,其中有5层卷积和2层全连接隐藏层,以及1个全连接输出层。
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:392192
    • 提供者:weixin_38752628
  1. 动手学深度学习PyTorch版—day02

  2. 目录   Day02 1.过拟合,欠拟合及解决 训练误差 泛化误差 过拟合 过拟合解决方案 欠拟合 2.梯度消失,梯度爆炸 考虑环境因素 协变量偏移 标签偏移 概念偏移 3.卷积神经网络基础 ALexNet VGG GoogLeNet 4.批量归一化,残差结构,密集连接 BN 对全连接层做批量归一化 对卷积层做批量归一化 预测时的批量归⼀化 Day02 过拟合、欠拟合及解决方案;梯度消失,梯度爆炸;注意力机制与Seq2seq;卷积神经网络基础 1.过拟合,欠拟合及解决 训练误差 指模型在训练集上
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:140288
    • 提供者:weixin_38632825
  1. 动手学深度学习—卷积神经网络

  2. 卷积神经网络 典型的卷积神经网络由卷积层、池化层、全连接层构成。 卷积层 卷积:在原始的输入上进行特征的提取。特征提取简言之就是,在原始输入上一个小区域一个小区域进行特征的提取。 直观的理解卷积 以上图为例: 第一次卷积可以提取出低层次的特征。 第二次卷积可以提取出中层次的特征。 第三次卷积可以提取出高层次的特征。 特征是不断进行提取和压缩的,最终能得到比较高层次特征,简言之就是对原式特征一步又一步的浓缩,最终得到的特征更可靠。利用最后一层特征可以做各种任务:比如分类、回归等。 卷积层得名于卷
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:206848
    • 提供者:weixin_38750644
  1. 伯禹公益AI《动手学深度学习PyTorch版》Task 05 学习笔记

  2. 伯禹公益AI《动手学深度学习PyTorch版》Task 05 学习笔记 Task 05:卷积神经网络基础;LeNet;卷积神经网络进阶 微信昵称:WarmIce 昨天打了一天的《大革命》,真挺好玩的。不过讲道理,里面有的剧情有点为了“动作”而“动作”,颇没意思。但是Ubi的故事还是讲得一如既往得好。 言归正传,这3节课,前两节没什么意思,充其量复习了计算卷积层输出的特征图大小的公式: $ \mathbf{floor}((in_size + padding – kernel_size)/stri
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:49152
    • 提供者:weixin_38720653
  1. 动手学深度学习 Task5 学习

  2. 卷积神经网络基础;leNet;卷积神经网络进阶 一、卷积神经网络基础 二维互相关运算 二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输入数组,卷积核在输入数组上滑动,在每个位置上,卷积核与该位置处的输入子数组按元素相乘并求和,得到输出数组中相应位置的元素。图1展示了一个互相关运算的例子,阴影部分分别是输入的第一个计算区域、核数组以及对应的输出
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:52224
    • 提供者:weixin_38667849
  1. 动手学深度学习Pytorch版Task05

  2. 卷积神经网络基础 二维卷积层 二维互相关运算 二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输入数组,卷积核在输入数组上滑动,在每个位置上,卷积核与该位置处的输入子数组按元素相乘并求和,得到输出数组中相应位置的元素。图1展示了一个互相关运算的例子,阴影部分分别是输入的第一个计算区域、核数组以及对应的输出。 二维卷积层 class Conv
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:198656
    • 提供者:weixin_38545485
  1. 《动手学深度学习》第二次打卡-学习小队

  2. 一、学习任务: Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶 Task04:机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer Task05:卷积神经网络基础;leNet;卷积神经网络进阶 二、学习要点 2.1 过拟合、欠拟合及其解决方案 过拟合:太过贴近于训练数据的特征了,在训练集上表现非常优秀,近乎完美的预测/区分了所有的数据,但是在新的测试集上却表现平平 欠拟合:样本不够或者算法不精确,测试样本特性没有学到,不具泛化性,拿到新样本后
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:512000
    • 提供者:weixin_38613154
  1. 循环、卷积神经网络

  2. 循环、卷积神经网络 参考伯禹学习平台《动手学深度》课程内容内容撰写的学习笔记 原文链接:https://www.boyuai.com/elites/course/cZu18YmweLv10OeV 感谢伯禹平台给我们提供一次免费学习的机会!! 训练误差和泛化误差 在解释上述现象之前,我们需要区分训练误差(training error)和泛化误差(generalization error)。通俗来讲,前者指模型在训练数据集上表现出的误差,后者指模型在任意一个测试数据样本上表现出的误差的期望,并常常通
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:99328
    • 提供者:weixin_38689113
  1. ElitesAI·动手学深度学习PyTorch版Task05打卡

  2. 卷积神经网络 神经网络结构: 卷积神经网络是神经网络模型的改进版本,依旧是层级网络,只是层的功能和形式做了变化,如: 卷积神经网络的层级结构 • 数据输入层/ Input layer   • 卷积计算层/ CONV layer   • ReLU激励层 / ReLU layer   • 池化层 / Pooling layer   • 全连接层 / FC layer 卷积计算层 这一层就是卷积神经网络最重要的一个层次,也是“卷积神经网络”的名字来源。 在这个卷积层,有两个关键操作:   • 局部关
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:721920
    • 提供者:weixin_38739919
  1. 动手学深度学习-学习笔记(五)

  2. 本文的主要内容有::卷积神经网络基础;leNet;卷积神经网络进阶 一、卷积神经网络基础 本节我们介绍卷积神经网络的基础概念,主要是卷积层和池化层,并解释填充、步幅、输入通道和输出通道的含义。 二维卷积层 本节介绍的是最常见的二维卷积层,常用于处理图像数据。 二维互相关运算 二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输入数组,卷积核在输入
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:251904
    • 提供者:weixin_38706951
  1. 《动手学深度学习》卷积神经网络LeNet

  2. 使用全连接层的局限性: 图像在同一列邻近的像素在这个向量中可能相距较远。它们构成的模式可能难以被模型识别。 对于大尺寸的输入图像,使用全连接层容易导致模型过大。 使用卷积层的优势: 卷积层保留输入形状。 卷积层通过滑动窗口将同一卷积核与不同位置的输入重复计算,从而避免参数尺寸过大。 LeNet结构 卷积层块里的基本单位是卷积层后接平均池化层:卷积层用来识别图像里的空间模式,如线条和物体局部,之后的平均池化层则用来降低卷积层对位置的敏感性。 卷积层块由两个这样的基本单位重复堆叠构成。在卷积层块中,
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:112640
    • 提供者:weixin_38582719
  1. 动手学深度学习之-卷积神经网络基础

  2. 卷积神经网络基础 参考伯禹学习平台《动手学深度学习》课程内容内容撰写的学习笔记 原文链接:https://www.boyuai.com/elites/course/cZu18YmweLv10OeV/video/whY-8BhPmsle8wyEEyTST 感谢伯禹平台,Datawhale,和鲸,AWS给我们提供的免费学习机会!! 总的学习感受:伯禹的课程做的很好,课程非常系统,每个较高级别的课程都会有需要掌握的前续基础知识的介绍,因此很适合本人这种基础较差的同学学习,建议基础较差的同学可以关注伯禹
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:132096
    • 提供者:weixin_38740596
  1. 《动手学深度学习》卷积神经网络基础;leNet;卷积神经网络进阶

  2. 卷积神经网络基础;leNet;卷积神经网络进阶卷积神经网络基础二位互相关运算二维卷积层互相关运算与卷积运算特征图与感受野填充和步幅填充:在输入的高宽两侧填充元素,通常填充0。步幅:卷积核在输入数组上每次滑动的行数列数。多输入通道和多输出通道1×11×11×1卷积层池化LeNetLeNet模型卷积神经网络进阶AlexNet使用重复元素的网络(VGG)网络中的网络(NIN)GoogleNet 卷积神经网络基础 介绍的是最常见的二维卷积层,常用于处理图像数据。 二位互相关运算 卷积核数组在输入数组上
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:516096
    • 提供者:weixin_38522636
  1. 动手学DL|Task5 LeNet+卷积神经网络进阶+循环神经网络进阶

  2. LeNet 笔记 使用全连接层的局限性: 图像在同一列邻近的像素在这个向量中可能相距较远。它们构成的模式可能难以被模型识别。 对于大尺寸的输入图像,使用全连接层容易导致模型过大。 使用卷积层的优势: 卷积层保留输入形状。 卷积层通过滑动窗口将同一卷积核与不同位置的输入重复计算,从而避免参数尺寸过大。 LeNet-5是Yann LeCun等人在多次研究后提出的最终卷积神经网络结构,一般LeNet即指代LeNet-5,是最早的卷积神经网络之一,并且推动了深度学习领域的发展。 LeNet-5包含七层,
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:889856
    • 提供者:weixin_38646634
  1. ElitesAI·动手学深度学习PyTorch版学习笔记-卷积神经网络基础;leNet;卷积神经网络进阶

  2. 宅家中看到Datawhale的学习号召,在大牛云集的群上找到了一个很佛系的小组,战战兢兢地开始了小白的深度学习之旅。感谢Datawhale、伯禹教育、和鲸科技,感谢课程制作者、组织者、各位助教以及其他志愿者! 1 卷积神经网络基础 1.1 二维卷积 本小节介绍了二维卷积,主要用于图像数据(刚好是二维的数据)处理。 二维卷积通过输入二维数据和二维核数据的运算(卷积),得到一个小于输入数据的二维输出数据,但是该输出数据依然部分保存了输入数据的信息。输出的二维数据可以看作输入数据的一个缩略图,也叫
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:51200
    • 提供者:weixin_38652196
« 12 3 »