点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
《动手学深度学习》机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer
机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer机器翻译及其相关技术编码器和解码器编码器解码器束搜索贪婪搜索束搜索注意力机制与Seq2Seq模型计算背景变量Transformer 机器翻译及其相关技术 机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。 编码器和解码器 在翻译时,输入句子和输出句子往往不一样长,所以为了处理输入
所属分类:
其它
发布日期:2021-01-07
文件大小:271360
提供者:
weixin_38596485
《动手学深度学习》笔记 Task04 机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer
机器翻译和数据集 机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。 数据预处理 将数据集清洗、转化为神经网络的输入minbatch 分词 字符串—单词组成的列表 建立词典 单词组成的列表—单词id组成的列表 载入数据集 Encoder-Decoder encoder:输入到隐藏状态 decoder:隐藏状态到输出 Sequence to Sequen
所属分类:
其它
发布日期:2021-01-07
文件大小:315392
提供者:
weixin_38739837
Task04:机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer知识点总结
机器翻译 把一种语言自动翻译为另一种,输出的是单词序列(其长度可能与原序列不同) 步骤为:数据预处理 —> Seq2Seq模型构建 —> 损失函数 —> 测试 数据预处理: 读取数据。 处理编码问题,删除无效字符串 分词。把字符串转化为单词列表。 建立字典。把单词组成的列表转化为单词索引的列表 在tf、pytorch这类框架中要做padding操作,使一个batch数据长度相等 定义数据生成器。 Seq2Seq 6. 先用循环神经网络编码成一个向量再解码输出一个序列的元素。然
所属分类:
其它
发布日期:2021-01-07
文件大小:60416
提供者:
weixin_38682086
《动手学深度学习Pytorch版》Task4-机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer
机器翻译及相关技术 Task2中的循环神经网络部分,有实现预测歌词的功能。在那个任务中,训练数据的输入输出长度是固定的,而在机器翻译中,输出的长度是不固定的,所以不能直接用RNN来处理这种任务。 Encoder-Decoder框架是常用于机器翻译,对话系统这类场景的框架。 需要注意的是,在训练过程中Decoder的输入是真实的label,而预测时,输入是上一个ceil的预测值 机器翻译解码 通常用beam search。beam search是一种贪心算法,不是全局最优解。 注意力机制 在“
所属分类:
其它
发布日期:2021-01-07
文件大小:350208
提供者:
weixin_38653602
Dive into deep learning task 04-机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer
6 机器翻译 机器翻译是一种序列到序列的模型。为了实现对语料的训练 ,需要对应的单词表,即平行语料。机器翻译要将序列处理成定长的向量,然后输入到rnn中(lstm,gru),然后变成中间向量,再通过decode方式编码输出最大可能的序列,即encoder-> vector->decoder的编解码方式。 语料要通过预处理(清洗,分词,转化成词典,转化成数据集),然后作词向量嵌入后,输入神经网络。 这就是所谓的seq2seq模型。简单的s2s模型的缺点是中间向量长度有限,不能充分表达输
所属分类:
其它
发布日期:2021-01-07
文件大小:55296
提供者:
weixin_38629920
动手学深度学习-学习笔记(四)
本文的主要内容有:机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer。 一、机器翻译及相关技术 机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。 字符在计算机里是以编码的形式存在,我们通常所用的空格是 \x20 ,是在标准ASCII可见字符 0x20~0x7e 范围内。 而 \xa0 属于 latin1 (ISO/IEC_88
所属分类:
其它
发布日期:2021-01-07
文件大小:770048
提供者:
weixin_38664556
《动手学深度学习》task4——机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer笔记
系统学习《动手学深度学习》点击这里: 《动手学深度学习》task1_1 线性回归 《动手学深度学习》task1_2 Softmax与分类模型 《动手学深度学习》task1_3 多层感知机 《动手学深度学习》task2_1 文本预处理 《动手学深度学习》task2_2 语言模型 《动手学深度学习》task2_3 循环神经网络基础 《动手学深度学习》task3_1 过拟合、欠拟合及其解决方案 《动手学深度学习》task3_2 梯度消失、梯度爆炸 《动手学深度学习》task3_3 循环神经网络进阶 《
所属分类:
其它
发布日期:2021-01-06
文件大小:78848
提供者:
weixin_38687968
Task04:机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer
如果我们现在要做个中英文翻译,比如我是中国人翻译成 ‘i am Chinese’.这时候我们会发现输入有 5个中文字,而输出只有三个英文单词. 也就是输入长度并不等于输出长度.这时候我们会引入一种 编码器-解码器的模型也就是 (Encoder-Decoder).首先我们通过编码器 对输入 ‘我是中国人’ 进行信息编码, 之后将生成的编码数据输入 decoder 进行解码.一般编码器和解码器 都会使用循环神经网络. 当然为了使机器知道句子的结束我们会在每个句子后面增加 一个 表示 句子的结束.使
所属分类:
其它
发布日期:2021-01-06
文件大小:1048576
提供者:
weixin_38658982
过拟合欠拟合及其解决方案;梯度消失梯度爆炸;循环神经网络进阶;机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer;卷积神经网络基础;leNet;卷积神经网络进阶
1.过拟合欠拟合及其解决方案 一类是模型无法得到较低的训练误差,我们将这一现象称作欠拟合(underfitting)。 模型的训练误差远小于它在测试数据集上的误差,我们称该现象为过拟合(overfitting)。 在实践中,我们要尽可能同时应对欠拟合和过拟合。 2.梯度消失梯度爆炸 深度模型有关数值稳定性的典型问题是消失(vanishing)和爆炸(explosion)。 假设一个层数为LLL的多层感知机的第lll层H(l)\boldsymbol{H}^{(l)}H(l)的权重参数为W(l)\b
所属分类:
其它
发布日期:2021-01-06
文件大小:488448
提供者:
weixin_38500117
《动手学深度学习》Task04 :机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer
Task04 :机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer 1.机器翻译及相关技术 机器翻译和数据集 机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。 步骤: 1.读取数据 2.数据预处理 3.分词:将字符串变成单词组成的列表 4.建立词典:将单词组成的列表变成单词id组成的列表 5.Encoder-Decoder:
所属分类:
其它
发布日期:2021-01-06
文件大小:1048576
提供者:
weixin_38501045
深度学习d4:机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer
机器翻译 指将一段文本从一种语言自动翻译到另一种语言 读取和预处理数据 # 将一个序列中所有的词记录在all_tokens中以便之后构造词典,然后在该序列后面添加PAD直到序列 # 长度变为max_seq_len,然后将序列保存在all_seqs中 def process_one_seq(seq_tokens, all_tokens, all_seqs, max_seq_len): all_tokens.extend(seq_tokens) seq_tokens += [EOS]
所属分类:
其它
发布日期:2021-01-06
文件大小:407552
提供者:
weixin_38727567
动手学深度学习PyTorch版–Task4、5–机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer;;卷积神经网络基础;leNet;卷积神经网络进阶
一.机器翻译及相关技术 机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。 1.Encoder-Decoder encoder:输入到隐藏状态 decoder:隐藏状态到输出 class Encoder(nn.Module): def __init__(self, **kwargs): super(Encoder, self)
所属分类:
其它
发布日期:2021-01-06
文件大小:1048576
提供者:
weixin_38674512
Task04:机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer学习笔记
机器翻译和数据集 机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。 import sys sys.path.append(’/home/kesci/input/d2l9528/’) import collections import d2l import zipfile from d2l.data.base import Vocab import t
所属分类:
其它
发布日期:2021-01-06
文件大小:93184
提供者:
weixin_38509504
动手学深度学习(四)
机器翻译及相关技术; 注意力机制与Seq2seq模型; Transformer 一 机器翻译及相关技术 机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。 首先,将数据集清洗、转化为神经网络的输入minbatch,分词,建立词典。# Encoder-Decoder encoder:输入到隐藏状态 decoder:隐藏状态到输出 二 注意力机制 在Do
所属分类:
其它
发布日期:2021-01-06
文件大小:618496
提供者:
weixin_38720997
动手学深度学习 Task4 笔记
机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer 2.15-2.19 一、机器翻译及相关技术 定义: 机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。 数据预处理 分词 建立词典 载入数据集 二、注意力机制与Seq2seq模型 在“编码器—解码器(seq2seq)”⼀节⾥,解码器在各个时间步依赖相同的背景变量(context
所属分类:
其它
发布日期:2021-01-06
文件大小:62464
提供者:
weixin_38516040
Task04:机器翻译及相关技术/注意力机制与Seq2seq模型/Transformer
1.机器翻译 机器翻译(MT)是将一个句子 x 从一种语言( 源语言 )转换为另一种语言( 目标语言 )的句子 y 的任务。 机器翻译的大致流程就是根据输入的文本,神经网络开始学习和记忆,这个就是所谓的Encoder编码过程;然后根据自己的记忆,把文本一一翻译出来,这个就是所谓的Decoder解码过程。 机器翻译的基本流程如下: 文本处理,这里我是以eng_fra的文本为例,每行是english[tab]french,以tab键分割。获取文本,清洗。 分别建立字典,一个english,一个f
所属分类:
其它
发布日期:2021-01-06
文件大小:403456
提供者:
weixin_38693589
机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer
机器翻译及相关技术: 解决RNN固定长度输出问题 翻译机制编码器和解码器机制 #编码器和解码器是分别对应输入和输出序列的两个神经网络,我们通常会在输入序列和输出序列后面附上一个特殊字符'' #(end of sequence)表示序列的终止,在测试模型时,一旦输出''就终止当前的序列输出 x=torch.tensor([[[1,1,1], [1,1,1]], [[1,1,1],
所属分类:
其它
发布日期:2021-01-06
文件大小:29696
提供者:
weixin_38745003
pytorch实现task4——机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer
机器翻译 机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。 其主要的步骤包括数据预处理、分词、建立词典、载入数据集、Encoder-decoder、seq2seq等。 注意力机制与Seq2seq模型 在“编码器—解码器(seq2seq)”⼀节⾥,解码器在各个时间步依赖相同的背景变量(context vector)来获取输⼊序列信息。当编码器为循环神经
所属分类:
其它
发布日期:2021-01-06
文件大小:65536
提供者:
weixin_38705723
动手学深度学习 Task04 机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer
【一】机器翻译及相关技术 机器翻译(MT): 将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出的是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。 数据预处理 将数据集清洗、转化为神经网络的输入minbatch。字符在计算机里是以编码的形式存在,我们通常所用的空格是 \x20 ,是在标准ASCII可见字符 0x20~0x7e 范围内。 而 \xa0 属于 latin1 (ISO/IEC_8859-1)中的扩展字符集字
所属分类:
其它
发布日期:2021-01-20
文件大小:424960
提供者:
weixin_38653040
动手学深度学习Task4
机器翻译及相关技术;注意力机制与Seq2Seq模型;Transformer 1.机器翻译及相关技术 2.注意力机制与Seq2Seq模型 3.Transformer 一 机器翻译及相关技术 机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词,且 输出序列的长度可能与源序列的长度不同;输入序列长度可变,输出序列长度可变。 二 注意力机制与Seq2seq模型 2.1 注意力机制 “ 机器翻译及相关技
所属分类:
其它
发布日期:2021-01-20
文件大小:111616
提供者:
weixin_38660802
«
1
2
»