您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. C#卷积计算代码-1维卷积计算.

  2. 使用C#实现1维卷积计算. 同样数据计算结果和Matlab计算的结果一样. 这正实现多维....
  3. 所属分类:C#

    • 发布日期:2010-06-11
    • 文件大小:35840
    • 提供者:gzkdev
  1. 卷积码的viterbi维特比译码算法的FPGA实现,而且附带源代码

  2. 2,1,7卷积码的viterbi译码算法的FPGA实现,内容详细,而且附带源代码
  3. 所属分类:电信

    • 发布日期:2011-05-02
    • 文件大小:1048576
    • 提供者:wowo004
  1. 二维卷积的c实现,很好的算法

  2. 二维卷积的c语言实现,若x为N1*M1的二维信号,y为N2*M2的二维信号,则卷积为(N1+N2-1)*(M1+M2-1)的信号 z(i,j)=∑ ∑x(m,n)y(i-m,j-n) m n
  3. 所属分类:C

    • 发布日期:2008-10-29
    • 文件大小:23552
    • 提供者:zyyhwj
  1. (7,1/2)卷积编码及其维特比译码算法的软件实现

  2. 详细介绍与分析了符合CSSDS编码标准的(7,1/2)卷积编码及其维特比译码算法的软件实现
  3. 所属分类:电信

    • 发布日期:2015-04-14
    • 文件大小:90112
    • 提供者:u012484987
  1. 卷积计算并行化的验证

  2. 计算1维卷积的并行化处理,主要描述思路和算法验证,相关代码在https://gitee.com/yt2014/cuda-programs/tree/master/conv_1d
  3. 所属分类:C++

    • 发布日期:2018-09-13
    • 文件大小:27648
    • 提供者:taot2009
  1. 基于Tensorflow一维卷积用法详解

  2. 我就废话不多说了,大家还是直接看代码吧! import tensorflow as tf import numpy as np input = tf.constant(1,shape=(64,10,1),dtype=tf.float32,name='input')#shape=(batch,in_width,in_channels) w = tf.constant(3,shape=(3,1,32),dtype=tf.float32,name='w')#shape=(filter_width,i
  3. 所属分类:其它

    • 发布日期:2020-12-17
    • 文件大小:47104
    • 提供者:weixin_38725531
  1. Pytorch 卷积中的 Input Shape用法

  2. 先看Pytorch中的卷积 class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) 二维卷积层, 输入的尺度是(N, C_in,H,W),输出尺度(N,C_out,H_out,W_out)的计算方式 这里比较奇怪的是这个卷积层居然没有定义input shape,输入尺寸明明是:(N, C_in, H,W),但是定义中
  3. 所属分类:其它

    • 发布日期:2020-12-17
    • 文件大小:153600
    • 提供者:weixin_38672794
  1. tensorflow实现简单的卷积网络

  2. 使用tensorflow实现一个简单的卷积神经,使用的数据集是MNIST,本节将使用两个卷积层加一个全连接层,构建一个简单有代表性的卷积网络。 代码是按照书上的敲的,第一步就是导入数据库,设置节点的初始值,Tf.nn.conv2d是tensorflow中的2维卷积,参数x是输入,W是卷积的参数,比如【5,5,1,32】,前面两个数字代表卷积核的尺寸,第三个数字代表有几个通道,比如灰度图是1,彩色图是3.最后一个代表卷积的数量,总的实现代码如下: from tensorflow.examples
  3. 所属分类:其它

    • 发布日期:2020-12-24
    • 文件大小:60416
    • 提供者:weixin_38741317
  1. 基于keras的卷积神经网络(CNN)

  2. 1 前言 本文以MNIST手写数字分类为例,讲解使用一维卷积和二维卷积实现 CNN 模型。关于 MNIST 数据集的说明,见使用TensorFlow实现MNIST数据集分类。实验中主要用到 Conv1D 层、Conv2D 层、MaxPooling1D 层和 MaxPooling2D 层,其参数说明如下: (1)Conv1D Conv1D(filters, kernel_size, strides=1, padding='valid', dilation_rate=1, activation=N
  3. 所属分类:其它

    • 发布日期:2020-12-22
    • 文件大小:58368
    • 提供者:weixin_38744375
  1. OpenCV人类行为识别(3D卷积神经网络)

  2. 上图视频测试链接:https://www.bilibili.com/video/BV13E411c7Mv/ 1. 3D卷积神经网络 相比于2D 卷积神经网络,3D卷积神经网络更能很好的利用视频中的时序信息。因此,其主要应用视频、行为识别等领域居多。3D卷积神经网络是将时间维度看成了第三维。 人类行为识别的实际应用: 安防监控。(检测识别异常行为:如打架,偷东西等) 监视和培训新人工作来确保任务执行正确。(例如,鸡蛋灌饼制作程序:和面,擀面团,打鸡蛋,摊饼等动作) 判断检测食品服务人员是否按规定洗
  3. 所属分类:其它

    • 发布日期:2020-12-21
    • 文件大小:289792
    • 提供者:weixin_38626192
  1. Python使用scipy模块实现一维卷积运算示例

  2. 本文实例讲述了Python使用scipy模块实现一维卷积运算。分享给大家供大家参考,具体如下: 一 介绍 signal模块包含大量滤波函数、B样条插值算法等等。下面的代码演示了一维信号的卷积运算。 二 代码 import numpy as np import scipy.signal x = np.array([1,2,3]) h = np.array([4,5,6]) print(scipy.signal.convolve(x, h))#一维卷积运算 三 运行结果 [ 4 13 28 2
  3. 所属分类:其它

    • 发布日期:2021-01-01
    • 文件大小:39936
    • 提供者:weixin_38657290
  1. 卷积神经网络基础

  2. 1.二维互相关运算:由二维的输入数组和二维的核数组得到一个二维的输出数组。 这个二维的核数组通常称为卷积核或过滤器(filter),它的高度和宽度一般比输入数组小。 二维卷积层是将输入与卷积核做互相关运算,再加一个标量偏置。因此卷积层的模型参数就包括卷积核和标量偏置。 2.特征图(feature map):简单来说就是指输出数组,因为它可以看作是输入在空间维度(高和宽)上的某一级表征。 感受野(receptive field):输出数组上的某一个数y可以被输入数组上的哪些数字x所影响,这些x就是
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:59392
    • 提供者:weixin_38714761
  1. 《动手学深度学习——卷积神经网络、LeNet、卷积神经网络进阶》笔记

  2. 动手学深度学习:卷积神经网络,LeNet,卷积神经网络进阶 卷积神经网络基础 目录: 1、卷积神经网络的基础概念 2、卷积层和池化层 3、填充、步幅、输入通道和输出通道 4、卷积层的简洁实现 5、池化层的简洁实现 1、卷积神经网络的基础概念 最常见的二维卷积层,常用于处理图像数据。 二维互相关运算 二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:135168
    • 提供者:weixin_38630571
  1. 动手学深度学习(五):卷积神经网络

  2. 卷积神经网络基础 卷积神经网络(convolutional neural network)是含有卷积层(convolutional layer)的神经网络。本文中介绍的卷积神经网络均使用最常见的二维卷积层。它有高和宽两个空间维度,常用来处理图像数据。本文中,我们将介绍简单形式的二维卷积层的工作原理。 1、二维互相关运算 虽然卷积层得名于卷积(convolution)运算,但我们通常在卷积层中使用更加直观的互相关(cross-correlation)运算。在二维卷积层中,一个二维输入数组和一个二维
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:101376
    • 提供者:weixin_38653085
  1. 卷积神经网络和机器翻译笔记

  2. 卷积神经网络基础笔记 二维卷积层 本节介绍的是最常见的二维卷积层,常用于处理图像数据。 二维互相关运算 二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输入数组,卷积核在输入数组上滑动,在每个位置上,卷积核与该位置处的输入子数组按元素相乘并求和,得到输出数组中相应位置的元素。图1展示了一个互相关运算的例子,阴影部分分别是输入的第一个计算区域
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:556032
    • 提供者:weixin_38742421
  1. pytorch task05 卷积神经网络

  2. pytorch task05 卷积神经网络 文章目录pytorch task05 卷积神经网络1.卷积神经网络基础1.1二维卷积层1.2填充和步幅1.3多输入通道和多输出通道1.4卷积层与全连接层的对比1.5池化2 经典模型LeNet-5AlexNetVGGGoogLeNet (Inception)ResNet退化问题残差网络的解决办法 1.卷积神经网络基础 1.1二维卷积层 二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:186368
    • 提供者:weixin_38706455
  1. pytorch实现task5——卷积神经网络基础;leNet;卷积神经网络进阶

  2. 卷积神经网络基础 卷积神经网络包括卷积层和池化层。 二维卷积层 最常见的是二维卷积层,常用于处理图像数据。 二维互相关运算 二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输入数组,卷积核在输入数组上滑动,在每个位置上,卷积核与该位置处的输入子数组按元素相乘并求和,得到输出数组中相应位置的元素。图1展示了一个互相关运算的例子,阴影部分分别是输入
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:61440
    • 提供者:weixin_38666300
  1. Task05:卷积神经网络基础;leNet;卷积神经网络进阶 学习笔记

  2. 卷积神经网络基础 本节我们介绍卷积神经网络的基础概念,主要是卷积层和池化层,并解释填充、步幅、输入通道和输出通道的含义。 二维卷积层 本节介绍的是最常见的二维卷积层,常用于处理图像数据。 二维互相关运算 二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输入数组,卷积核在输入数组上滑动,在每个位置上,卷积核与该位置处的输入子数组按元素相乘并求和,
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:153600
    • 提供者:weixin_38628830
  1. 基于三维卷积神经网络的肺结节识别研究

  2. 针对传统计算机辅助检测系统中肺结节检测存在大量假阳性的问题,提出一种基于三维卷积神经网络的肺结节识别方法。首先,将传统二维卷积神经网络扩展为三维卷积神经网络,充分挖掘肺结节的三维特征,增强特征的表达能力;其次,将密集连接网络与SENet相结合,在加强特征传递和复用的同时,通过特征重标定自适应学习特征权重;另外,引入focal loss作为网络的分类损失函数,提高对难样本的学习。在LUNA16数据集上的实验结果表明:与当前的主流深度学习算法相比,所提网络模型在平均每组CT图像中假阳个数为1和4时的
  3. 所属分类:其它

    • 发布日期:2021-02-11
    • 文件大小:2097152
    • 提供者:weixin_38694336
  1. 二维和三维卷积神经网络相结合的CT图像肺结节检测方法

  2. 针对现有方法在大量肺部数据中存在的检测肺结节效率不高及大量假阳性的问题,提出了一种基于端到端的二维全卷积对象定位网络(2D FCN)与三维立体式目标分类卷积神经网络(3D CNN)相结合的肺结节检测方法。首先采用2D全卷积神经网络对所有CT图像进行初步检测,快速识别和定位CT图像中的疑似结节区域,输出一张与原图尺寸相同且被标记好的图像。然后计算疑似结节区域的坐标,根据坐标值提取疑似结节的三维立体图像块训练构建的3D卷积神经网络框架。最后利用训练的3D模型对候选结节做二分类处理以去除假阳性。在LI
  3. 所属分类:其它

    • 发布日期:2021-01-27
    • 文件大小:9437184
    • 提供者:weixin_38689041
« 12 3 4 5 6 7 8 9 10 »