点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - Python中使用支持向量机(SVM)算法
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
文本挖掘tmSVM开源项目包含Python和Java两种版本带参考文档
文本挖掘tmSVM开源项目集成libSVM和liblinear包含Python和Java两种版本带PDF源码参考文档 简介 文本挖掘无论在学术界还是在工业界都有很广泛的应用场景。而文本分类是文本挖掘中一个非常重要的手段与技术。现有的分类技术都已经非常成熟,SVM、KNN、Decision Tree、AN、NB在不同的应用中都展示出较好的效果,前人也在将这些分类算法应用于文本分类中做出许多出色的工作。但在实际的商业应用中,仍然有很多问题没有很好的解决,比如文本分类中的高维性和稀疏性、类别的不平衡
所属分类:
Python
发布日期:2014-02-23
文件大小:3145728
提供者:
vcfriend
2017年最新机器学习入门与实战精品高清全套视频教程附讲义作业(anaconda2 4.3Pytyhon2.7 jupyter) 70课
2017年最新机器学习入门与实战精品高清全套视频教程附讲义作业(anaconda2 4.3Pytyhon2.7 jupyter) 70课 课程介绍: 从基本的软件安装到必备的Python扩展讲起,然后对机器学习算法一一讲解,同时配合编程实操的实现过程,适合零基础系统学习,配套资料包括讲义作业软件数据都有。 课程目录: 第一章Numpy前导介绍 1.1、Anconda安装 1.2、JupyterNoteBook 1.3、Numpy介绍+ndarry 1.4、ndarry的shape属性巧算 1.
所属分类:
机器学习
发布日期:2018-05-04
文件大小:2048
提供者:
happyzhangdi008
基于支持向量机的图片分类程序
对图片的分类主要包含以下四个步骤:1.用尺度不变特征转换(SIFT)算法来提取训练集中图片的特征值。2.用K-means算法将这些特征值聚成n类。这n类中的每一类就相当于是图片的单词,所有的n个类别构成词汇表。3.对训练集中的图片构造词汇表,就是将图片中的特征值归到不同的类中,然后统计每一类的特征值的频率。4. 用支持向量机(SVM)训练一个多类分类器,将每张图片的词汇表作为特征向量。对于未知类别的图片,计算它的词汇表,使用训练的SVM分类器进行分类。
所属分类:
机器学习
发布日期:2018-01-25
文件大小:27262976
提供者:
tuye1361
sklearn0.19中文文档
sklearn0.19中文文档 PDF格式高清。 .1. 广义线性模型 1.1.1. 普通最小二乘法 1.1.1.1. 普通最小二乘法复杂度 1.1.2. 岭回归 1.1.2.1. 岭回归的复杂度 1.1.2.2. 设置正则化参数:广义交叉验证 1.1.3. Lasso 1.1.3.1. 设置正则化参数 1.1.3.1.1. 使用交叉验证 1.1.3.1.2. 基于信息标准的模型选择 1.1.3.1.3. 与 SVM 的正则化参数的比较 1.1.4. 多任务 Lasso 1.1.5. 弹性网络
所属分类:
机器学习
发布日期:2018-10-30
文件大小:14680064
提供者:
hardpen2013
基于Python实现了SVM的代码
使用Python支持向量机的代码实现,首先基于简化版的SMO实现分类超平面的计算,但时间较长,然后将完整版的SMO算法封装到类中,实现超平面的快速计算。最后使用SVM进行手写体识别实例的实现
所属分类:
机器学习
发布日期:2019-01-01
文件大小:28311552
提供者:
pcb931126
Python中使用支持向量机(SVM)算法
主要为大家详细介绍了Python中使用支持向量机SVM算法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
所属分类:
其它
发布日期:2020-09-20
文件大小:121856
提供者:
weixin_38729399
Python中使用支持向量机SVM实践
在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别、分类(异常值检测)以及回归分析。 其具有以下特征: (1)SVM可以表示为凸优化问题,因此可以利用已知的有效算法发现目标函数的全局最小值。而其他分类方法都采用一种基于贪心学习的策略来搜索假设空间,这种方法一般只能获得局部最优解。 (2) SVM通过最大化决策边界的边缘来实现控制模型的能力。尽管如此,用户必须提供其他参数,如使用核函数类型和引入松弛变量等。 (
所属分类:
其它
发布日期:2020-12-25
文件大小:60416
提供者:
weixin_38534344
Python中支持向量机SVM的使用方法详解
除了在Matlab中使用PRTools工具箱中的svm算法,Python中一样可以使用支持向量机做分类。因为Python中的sklearn库也集成了SVM算法,本文的运行环境是Pycharm。 一、导入sklearn算法包 Scikit-Learn库已经实现了所有基本机器学习的算法,具体使用详见官方文档说明 skleran中集成了许多算法,其导入包的方式如下所示, 逻辑回归:from sklearn.linear_model import LogisticRegression
所属分类:
其它
发布日期:2020-12-25
文件大小:182272
提供者:
weixin_38738783
Python中使用支持向量机(SVM)算法
在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别、分类(异常值检测)以及回归分析。 其具有以下特征: (1)SVM可以表示为凸优化问题,因此可以利用已知的有效算法发现目标函数的全局最小值。而其他分类方法都采用一种基于贪心学习的策略来搜索假设空间,这种方法一般只能获得局部最优解。 (2) SVM通过最大化决策边界的边缘来实现控制模型的能力。尽管如此,用户必须提供其他参数,如使用核函数类型和引入松弛变量等。
所属分类:
其它
发布日期:2020-12-24
文件大小:120832
提供者:
weixin_38581405
Python中的支持向量机SVM的使用(附实例代码)
除了在Matlab中使用PRTools工具箱中的svm算法,Python中一样可以使用支持向量机做分类。因为Python中的sklearn库也集成了SVM算法,本文的运行环境是Pycharm。 一、导入sklearn算法包 Scikit-Learn库已经实现了所有基本机器学习的算法,具体使用详见官方文档说明:http://scikit-learn.org/stable/auto_examples/index.html。 skleran中集成了许多算法,其导入包的方式如下所示, 逻辑回归:from
所属分类:
其它
发布日期:2020-12-26
文件大小:179200
提供者:
weixin_38703980
secure-svm-源码
支持向量机 这是一个存储库,其中包含一些用于SVM训练的算法的实现。有两种类型的实现:清晰的实现(仅使用带有NumPy库的Python 3)以及使用MPC协议进行培训并在MP-SPDZ框架( )中实现的安全实现。 实现的算法: SMO算法。 简化的SMO算法。 梯度下降SVM优化。 使用梯度下降和高斯-赛德尔方法进行最小二乘优化。
所属分类:
其它
发布日期:2021-03-19
文件大小:48128
提供者:
weixin_42104906
machine-learning-coursera-python:该存储库包含由斯坦福大学在Coursera上执行的Andrew Ng的机器学习课程的某些编程作业的python实现-源码
机器学习课程python 该存储库包含由Stanford University创建的Andrew Ng在Coursera上的机器学习课程的某些编程作业的python实现。 编程练习1:线性回归在本练习中,您将实现线性回归并了解它如何在现实世界的数据集上工作。 编程练习2:逻辑回归在本练习中,您将实现逻辑回归并将其应用于两个不同的数据集。 编程练习3:多类分类和神经网络在本练习中,您将实现神经网络对所有逻辑回归和前馈传播的识别,以识别手写数字。 编程练习4:神经网络学习在本练习中,您将为
所属分类:
其它
发布日期:2021-03-07
文件大小:1048576
提供者:
weixin_42116596
Coursera-IBM-机器学习与Python的最终项目:Coursera-IBM-机器学习与Python的最终项目:最佳分类器,讲师-Saeed Aghabozorgi-源码
Coursera-IBM-机器学习与Python最终项目 Coursera-IBM-机器学习与Python最终项目:最佳分类器,讲师-Saeed Aghabozorgi: 项目:建立分类器以预测是否将还清贷款案。 任务-从以前的贷款申请中加载历史数据集,清理数据,并对数据应用不同的分类算法。 使用不同的分类算法-k最近邻(KNN),决策树,支持向量机(SVM)和Logistic回归分析邻域数据并建立最佳分类器作为预测模型。 当适用这些结果时,将使用以下度量标准将结果报告为每个分类器的准确性
所属分类:
其它
发布日期:2021-02-20
文件大小:680960
提供者:
weixin_42125770
svm_mnist_digit_classification:具有scikit学习和支持向量机(SVM)算法的MNIST数字分类-源码
使用scikit-learn在python中进行SVM MNIST数字分类 该项目提出了的众所周知的问题。 出于本教程的目的,我将使用具有原始像素特征的算法。 该解决方案使用易于使用的机器学习库以python编写。 该项目的目标不是达到最先进的性能,而是教您如何使用sklearn的SVM在图像数据上训练SVM分类器。 尽管该解决方案并未针对高精度进行优化,但结果还是不错的(请参见下表)。 如果您想获得最佳性能,这两个资源将向您展示当前的最新解决方案: 下表显示了与其他模型相比的一些结果:
所属分类:
其它
发布日期:2021-02-03
文件大小:50176
提供者:
weixin_42150341
Blooddonordiction:由于数字化,我们经常可以访问大型数据库,该数据库包含各种信息领域,从数字到文本甚至是布尔值。 这样的数据库特别适合于机器学习,分类和大数据分析任务。 假设我们掌握其他字段的信息,我们便能够使用现有数据训练
献血者预测 引用我们! 抽象 由于数字化,我们经常可以访问大型数据库,该数据库包含各种信息领域,从数字到文本,甚至是布尔值。 这样的数据库特别适合于机器学习,分类和大数据分析任务。 假设我们掌握其他字段的信息,我们便能够使用现有数据训练分类器,并将其用于预测某个字段的值。 最具体地说,在这项研究中,我们查看了由医院编制的电子健康记录(EHR)。 这些EHR是访问单个患者数据的便捷方式,但是从整体上来说,处理仍然是一项任务。 但是,通过使用分类器,由连贯的,制表良好的结构组成的EHR非常适合于机
所属分类:
其它
发布日期:2021-02-03
文件大小:379904
提供者:
weixin_42172204
h2o-3:H2O是一个开源,分布式,快速且可扩展的机器学习平台:深度学习,梯度提升(GBM)和XGBoost,随机森林,广义线性建模(带有弹性网的GLM),K均值,PCA,广义附加模型(GAM),RuleFit,支持向量机(SVM),堆叠
水 H2O是用于分布式,可扩展的机器学习的内存平台。 H2O使用熟悉的界面(例如R,Python,Scala,Java,JSON和Flow笔记本/网络界面),并与Hadoop和Spark等大数据技术无缝协作。 H2O提供了许多流行实现,例如广义线性模型(GLM),梯度提升机(包括XGBoost),随机森林,深层神经网络,堆叠体,朴素贝叶斯,广义加性模型(GAM),考克斯比例危害,K-表示PCA,Word2Vec以及全自动机器学习算法( )。 H2O是可扩展的,因此开发人员可以添加自己选择的
所属分类:
其它
发布日期:2021-02-03
文件大小:92274688
提供者:
weixin_42126668
Movie_Success_Prediction_Data_Mining:通过ML算法(朴素贝叶斯,支持向量机,决策树)基于IMDb数据预测电影成功-源码
INSE6180 使用3个研究论文的数据挖掘算法实现。 该项目使用所有上述算法对从IMDb数据库获得的数据进行ML分析。 这些算法(朴素贝叶斯算法,决策树算法和支持向量机)在不同的数据集上效果最佳,但为了使它们更公平,已使用了新的IMDb数据库。 首先,对数据进行清洗,预处理,修剪然后整合,以便为分类器提供可能的最佳有意义数据。 考虑到要进行分析,分类器从头开始用Python语言编写了脚本。 最后,在已开发的分类器中进行分析,并进行比较研究。 队友:Gursimran Singh –400
所属分类:
其它
发布日期:2021-03-30
文件大小:2097152
提供者:
weixin_42109732