梯度下降
梯度下降算法是一种最为常用的解决优化问题的方法,该方法每次下降的方向均为当前位置的负梯度方向,以此保证下降速度最快,从而使损失函数迅速达到最小化。
为了简化问题, 首先假设 m=1 , 对 J(θ) 求 θj 的偏导数:
考虑整个 θ , 以及全部 xi for i in range(m)
python实现
import numpy as np
import matplotlib.pyplot as plt
data = np.loadtxt('linear_regressio
最小二乘法是先将方程自变量与因变量化为系数矩阵X,再求该矩阵的转置矩阵(X1),接着求矩阵X与他的转置矩阵的X1的乘积(X2),然后求X2的逆矩阵。最后整合为系数矩阵W,求解后分别对应截距b、a1、和a2。可见计算一个矩阵的逆是相当耗费时间且复杂的,而且求逆也会存在数值不稳定的情况。
梯度下降法迭代的次数可能会比较多,但是相对来说计算量并不是很大。且其有收敛性保证。故在大数据量的时候,使用梯度下降法比较好。
梯度下降法
import numpy as np
from matplotlib imp
最小二乘法是先将方程自变量与因变量化为系数矩阵X,再求该矩阵的转置矩阵(X1),接着求矩阵X与他的转置矩阵的X1的乘积(X2),然后求X2的逆矩阵。最后整合为系数矩阵W,求解后分别对应截距b、a1、和a2。可见计算一个矩阵的逆是相当耗费时间且复杂的,而且求逆也会存在数值不稳定的情况。
梯度下降法迭代的次数可能会比较多,但是相对来说计算量并不是很大。且其有收敛性保证。故在大数据量的时候,使用梯度下降法比较好。
梯度下降法
import numpy as np
from matplotlib imp
最小二乘法是先将方程自变量与因变量化为系数矩阵X,再求该矩阵的转置矩阵(X1),接着求矩阵X与他的转置矩阵的X1的乘积(X2),然后求X2的逆矩阵。最后整合为系数矩阵W,求解后分别对应截距b、a1、和a2。可见计算一个矩阵的逆是相当耗费时间且复杂的,而且求逆也会存在数值不稳定的情况。
梯度下降法迭代的次数可能会比较多,但是相对来说计算量并不是很大。且其有收敛性保证。故在大数据量的时候,使用梯度下降法比较好。
梯度下降法
import numpy as np
from matplotlib imp