点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - python单变量回归分析
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
测试笔记(从零开始)
第一阶段 7 第一章 测试基础 7 1. 什么是软件测试: 7 2. ★软件测试的目的、意义:(怎么做好软件测试) 7 3.软件生命周期: 7 第二章 测试过程 8 1.测试模型 8 H模型: 8 V模型 9 2.内部测试 10 3外部测试: 10 验收测试:(在系统测试之后) 11 回归测试: 11 4.测试过程(干什么,怎么干) 12 5.各阶段输入、输出标准以及入口、出口准则:(测试阶段过程要素) 12 第三章 测试方法 14 测试方法对比 14 测试方法组合 16 第四章 软件质量 1
所属分类:
其它
发布日期:2015-02-27
文件大小:7340032
提供者:
terrly88
sklearn0.19中文文档
sklearn0.19中文文档 PDF格式高清。 .1. 广义线性模型 1.1.1. 普通最小二乘法 1.1.1.1. 普通最小二乘法复杂度 1.1.2. 岭回归 1.1.2.1. 岭回归的复杂度 1.1.2.2. 设置正则化参数:广义交叉验证 1.1.3. Lasso 1.1.3.1. 设置正则化参数 1.1.3.1.1. 使用交叉验证 1.1.3.1.2. 基于信息标准的模型选择 1.1.3.1.3. 与 SVM 的正则化参数的比较 1.1.4. 多任务 Lasso 1.1.5. 弹性网络
所属分类:
机器学习
发布日期:2018-10-30
文件大小:14680064
提供者:
hardpen2013
scikit-learn-0.21.3-中文文档.pdf
scikit-learn 是基于 Python 语言的机器学习工具 简单高效的数据挖掘和数据分析工具 可供大家在各种环境中重复使用 建立在 NumPy ,SciPy 和 matplotlib 上 开源,可商业使用 - BSD许可证1.监督学习 1广义线性模型 °1.1.1普通最小二乘法 1.1.2岭回归 1.1.3LaSs0 o1.1.4多任务 Lasso 115弹性网络 o116多任务弹性网络 1.1.7最小角回归 1.1. 8 LARS Lasso 1.19正交匹配追踪法(OMP 1.1.1
所属分类:
机器学习
发布日期:2019-08-24
文件大小:41943040
提供者:
h394266861
python实现简单的单变量线性回归方法
线性回归是机器学习中的基础算法之一,属于监督学习中的回归问题,算法的关键在于如何最小化代价函数,通常使用梯度下降或者正规方程(最小二乘法),在这里对算法原理不过多赘述,建议看吴恩达发布在斯坦福大学上的课程进行入门学习。 这里主要使用python的sklearn实现一个简单的单变量线性回归。 sklearn对机器学习方法封装的十分好,基本使用fit,predict,score,来训练,预测,评价模型, 一个简单的事例如下: from pandas import DataFrame from pa
所属分类:
其它
发布日期:2020-12-25
文件大小:54272
提供者:
weixin_38564003
机器学习笔记–2、回归分析及python实现
回归分析 文章目录回归分析认识回归什么是回归Sklearn中的回归回归模型的应用线性模型(linear model)获得线性模型线性模型的基本形式线性回归目标函数(单变量)目标函数(多变量)python实现数据集划分:线性回归实例逻辑回归对数几率回归/逻辑回归(logistic regression)逻辑回归实例 认识回归 什么是回归 回归:统计学分析数据的方法,目的在于了解两个或多个变数间是否相关、 研究其相关方向与强度,并建立数学模型以便观察特定变数来预测研究者感兴趣的变数。回归分析可以帮助
所属分类:
其它
发布日期:2020-12-21
文件大小:98304
提供者:
weixin_38661236
机器学习笔记–2、回归分析及python实现
回归分析 文章目录回归分析认识回归什么是回归Sklearn中的回归回归模型的应用线性模型(linear model)获得线性模型线性模型的基本形式线性回归目标函数(单变量)目标函数(多变量)python实现数据集划分:线性回归实例逻辑回归对数几率回归/逻辑回归(logistic regression)逻辑回归实例 认识回归 什么是回归 回归:统计学分析数据的方法,目的在于了解两个或多个变数间是否相关、 研究其相关方向与强度,并建立数学模型以便观察特定变数来预测研究者感兴趣的变数。回归分析可以帮助
所属分类:
其它
发布日期:2020-12-21
文件大小:98304
提供者:
weixin_38745003
THE-SPARKS-FOUNDATION:该存储库包含我作为[THE SPARKS INTERNSHIP]实习生时完成的任务(https:www.thesparksfoundationsingapore.org)-源码
Sparks基金会的任务 该存储库包含我作为实习生时完成的任务 实习类别-数据科学和业务分析 实习期限-1个月(FEB-2020) 实习类型-在家工作 #Task-1:使用监督式ML的预测(级别-初学者) 请单击右侧的图像查看我的解决方案。 根据学习时间预测学生的分数百分比。 这是一个简单的线性回归任务,因为它仅涉及2个变量。 数据可在找到 您可以使用R,Python,SAS Enterprise Miner或任何其他工具。 如果学生每天学习9.50小时,则预计得分是多少? #Ta
所属分类:
其它
发布日期:2021-02-16
文件大小:1048576
提供者:
weixin_42141437
The_Sparks_Foundation_Tasks:此存储库包含我作为The Sparks Foundation的实习生时完成的任务-源码
Sparks基金会的任务 该存储库包含我作为实习生时完成的任务。 实习类别-数据科学和业务分析。 实习期限-1个月(2021年2月至今)。 实习类型-在家工作。 在这次实习中,我们总共获得了8个任务。 任务1:使用监督的ML进行预测(级别-初学者) 请单击右侧的图像查看我的解决方案。 根据学习时间预测学生的分数百分比。 这是一个简单的线性回归任务,因为它仅涉及2个变量。 您可以使用R,Python,SAS Enterprise Miner或任何其他工具。 如果学生每天学习9.25
所属分类:
其它
发布日期:2021-02-12
文件大小:113664
提供者:
weixin_42099633