点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - python最速下降法
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
Python实现最速下降法、共轭梯度法和信赖域狗腿法源代码
Python实现最速下降法、共轭梯度法和信赖域狗腿法源代码。可以直接运行,同时将迭代分析绘图。配有详细注释
所属分类:
专业指导
发布日期:2020-04-08
文件大小:6144
提供者:
SL_World
python实现最速下降法
主要为大家详细介绍了python实现最速下降法,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
所属分类:
其它
发布日期:2020-09-17
文件大小:31744
提供者:
weixin_38743054
python实现梯度法 python最速下降法
主要为大家详细介绍了python梯度法,最速下降法的原理,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
所属分类:
其它
发布日期:2020-09-17
文件大小:120832
提供者:
weixin_38656741
基于Python共轭梯度法与最速下降法之间的对比
主要介绍了基于Python共轭梯度法与最速下降法之间的对比,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
所属分类:
其它
发布日期:2020-09-17
文件大小:124928
提供者:
weixin_38730840
用Python实现最速下降法求极值的方法
今天小编就为大家分享一篇用Python实现最速下降法求极值的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
所属分类:
其它
发布日期:2020-09-19
文件大小:162816
提供者:
weixin_38668225
python+numpy+matplotalib实现梯度下降法
这个阶段一直在做和梯度一类算法相关的东西,索性在这儿做个汇总, 一、算法论述 梯度下降法(gradient descent)别名最速下降法(曾经我以为这是两个不同的算法-.-),是用来求解无约束最优化问题的一种常用算法。下面以求解线性回归为题来叙述: 设:一般的线性回归方程(拟合函数)为:(其中的值为1) 则这一组向量参数选择的好与坏就需要一个机制来评估,据此我们提出了其损失函数为(选择均方误差): 我们现在的目的就是使得损失函数取得最小值,即目标函数为: 如果的值取到了0,意味着我
所属分类:
其它
发布日期:2020-12-24
文件大小:219136
提供者:
weixin_38694006
梯度下降法介绍及利用Python实现的方法示例
本文主要给大家介绍了梯度下降法及利用Python实现的相关内容,分享出来供大家参考学习,下面话不多说,来一起看看详细的介绍吧。 梯度下降法介绍 梯度下降法(gradient descent),又名最速下降法(steepest descent)是求解无约束最优化问题最常用的方法,它是一种迭代方法,每一步主要的操作是求解目标函数的梯度向量,将当前位置的负梯度方向作为搜索方向(因为在该方向上目标函数下降最快,这也是最速下降法名称的由来)。 梯度下降法特点:越接近目标值,步长越小,下降速度越慢。 直
所属分类:
其它
发布日期:2020-12-24
文件大小:295936
提供者:
weixin_38697063
python实现最速下降法
本文实例为大家分享了python实现最速下降法的具体代码,供大家参考,具体内容如下 代码: from sympy import * import numpy as np def backtracking_line_search(f,df,x,x_k,p_k,alpha0): rho=0.5 c=10**-4 alpha=alpha0 replacements1=zip(x,x_k) replacements2=zip(x,x_k+alpha*p_k) f_k=f.sub
所属分类:
其它
发布日期:2020-12-20
文件大小:32768
提供者:
weixin_38696176
python实现梯度法 python最速下降法
假设我们已经知道梯度法——最速下降法的原理。 现给出一个算例: 如果人工直接求解: 现给出Python求解过程: import numpy as np from sympy import * import math import matplotlib.pyplot as plt import mpl_toolkits.axisartist as axisartist # 定义符号 x1, x2, t = symbols('x1, x2, t') def func(): # 自定义一个函
所属分类:
其它
发布日期:2020-12-20
文件大小:119808
提供者:
weixin_38605188
用Python实现最速下降法求极值的方法
对于一个多元函数,用最速下降法(又称梯度下降法)求其极小值的迭代格式为 其中为负梯度方向,即最速下降方向,αkαk为搜索步长。 一般情况下,最优步长αkαk的确定要用到线性搜索技术,比如精确线性搜索,但是更常用的是不精确线性搜索,主要是Goldstein不精确线性搜索和Wolfe法线性搜索。 为了调用的方便,编写一个Python文件,里面存放线性搜索的子函数,命名为linesearch.py,这里先只编写了Goldstein线性搜索的函数,关于Goldstein原则,可以参看最优化课本。 线性
所属分类:
其它
发布日期:2020-12-26
文件大小:164864
提供者:
weixin_38609002
基于Python共轭梯度法与最速下降法之间的对比
在一般问题的优化中,最速下降法和共轭梯度法都是非常有用的经典方法,但最速下降法往往以”之”字形下降,速度较慢,不能很快的达到最优值,共轭梯度法则优于最速下降法,在前面的某个文章中,我们给出了牛顿法和最速下降法的比较,牛顿法需要初值点在最优点附近,条件较为苛刻。 算法来源:《数值最优化方法》高立,P111 我们选用了64维的二次函数来作为验证函数,具体参见上书111页。 采用的三种方法为: 共轭梯度方法(FR格式)、共轭梯度法(PRP格式)、最速下降法 # -*- coding: utf-8 -
所属分类:
其它
发布日期:2021-01-21
文件大小:124928
提供者:
weixin_38631049
python实现共轭梯度法
共轭梯度法是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。 在各种优化算法中,共轭梯度法是非常重要的一种。其优点是所需存储量小,具有步收敛性,稳定性高,而且不需要任何外来参数。 算法步骤: import random import numpy as np import matplotlib.pypl
所属分类:
其它
发布日期:2021-01-20
文件大小:157696
提供者:
weixin_38650379
Python-梯度下降法(最速下降法)求解多元函数
梯度下降法的计算过程就是沿梯度下降的方向求解极小值。在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降法是最常采用的方法之一。 多元函数的图像显示 方程为z=x1 ^2 + 2 * x2 ^2 – 4 * x1- 2 * x1 * x2 import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl %matplotlib inline import math from mpl_toolkits.m
所属分类:
其它
发布日期:2021-01-20
文件大小:129024
提供者:
weixin_38734506