您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 决策树算法python代码实现

  2. 决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy = 系统的凌乱程度,使用算法ID3, C4.5和C5.0生成树算法使用熵。这一度量是基于信息学理论中熵的概念。 决策树是一种树形结构,其中每个内部节点
  3. 所属分类:机器学习

    • 发布日期:2018-06-01
    • 文件大小:4096
    • 提供者:u010919410
  1. python决策树代码

  2. 决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy = 系统的凌乱程度,使用算法ID3, C4.5和C5.0生成树算法使用熵。这一度量是基于信息学理论中熵的概念。
  3. 所属分类:机器学习

    • 发布日期:2018-10-12
    • 文件大小:5120
    • 提供者:qq_41122845
  1. 决策树python代码

  2. 决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy = 系统的凌乱程度,使用算法ID3, C4.5和C5.0生成树算法使用熵。这一度量是基于信息学理论中熵的概念。 决策树是一种树形结构,其中每个内部节点
  3. 所属分类:机器学习

    • 发布日期:2019-03-31
    • 文件大小:2048
    • 提供者:qq_42617330
  1. AI学习知识点.xmind

  2. *AI学习知识点* 1. 基础知识 概率论 微积分与逼近论 极限、微分、积分的基本概念 利用逼近的思想理解微积分,利用积分的方式理解概率论 概率论的基础 古典模型 常见的概率分布 大数定理和中心极限定理 协方差和相关系数 最大似然估计和最大后验估计 凸优化 凸优化的基本概念 凸函数 凸集 凸优化问题的标准形式 线性代数及矩阵 线性空间及线性变化 矩阵的基本概念 状态转移矩阵 特征
  3. 所属分类:Python

    • 发布日期:2019-07-15
    • 文件大小:240640
    • 提供者:lingfeian
  1. Python计算信息熵实例

  2. 计算信息熵的公式:n是类别数,p(xi)是第i类的概率 假设数据集有m行,即m个样本,每一行最后一列为该样本的标签,计算数据集信息熵的代码如下: from math import log def calcShannonEnt(dataSet): numEntries = len(dataSet) # 样本数 labelCounts = {} # 该数据集每个类别的频数 for featVec in dataSet: # 对每一行样本 currentLabel = feat
  3. 所属分类:其它

    • 发布日期:2020-12-17
    • 文件大小:51200
    • 提供者:weixin_38501363
  1. python实现决策树C4.5算法详解(在ID3基础上改进)

  2. 一、概论 C4.5主要是在ID3的基础上改进,ID3选择(属性)树节点是选择信息增益值最大的属性作为节点。而C4.5引入了新概念“信息增益率”,C4.5是选择信息增益率最大的属性作为树节点。 二、信息增益 以上公式是求信息增益率(ID3的知识点) 三、信息增益率 信息增益率是在求出信息增益值在除以。 例如下面公式为求属性为“outlook”的值: 四、C4.5的完整代码 from numpy import * from scipy import * from math import lo
  3. 所属分类:其它

    • 发布日期:2020-12-24
    • 文件大小:134144
    • 提供者:weixin_38509504