您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. MachineLearning-master-python.zip

  2. 属于网络下载资源,感谢原作者的贡献。 ##目录介绍 - **DeepLearning Tutorials** 这个文件夹下包含一些深度学习算法的实现代码,以及具体的应用实例,包含: Keras使用进阶。介绍了怎么保存训练好的CNN模型,怎么将CNN用作特征提取,怎么可视化卷积图。 [keras_usage]介绍了一个简单易用的深度学习框架keras,用经典的Mnist分类问题对该框架的使用进行说明,训练一个CNN,总共不超过30行代码。 将卷积神经网络CNN应用于人脸识别的一个demo,人脸数
  3. 所属分类:专业指导

    • 发布日期:2016-07-04
    • 文件大小:1048576
    • 提供者:qq_33042687
  1. 主成分分析(Principal components analysis)(Python)

  2. 主成分分析(Principal components analysis)是最常用的降维方法 算法步骤: (1)对所有样本进行中心化操作 (2)计算样本的协方差矩阵 (3)对协方差矩阵做特征值分解 (4)取最大的d个特征值对应的特征向量,构造投影矩阵
  3. 所属分类:机器学习

    • 发布日期:2019-05-31
    • 文件大小:2048
    • 提供者:aioo11
  1. 核主成分分析(Kernel Principal Component Analysis, KPCA)(Python)

  2. 核主成分分析(Kernel Principal Component Analysis, KPCA) PCA方法假设从高维空间到低维空间的函数映射是线性的,但是在不少现实任务中,可能需要非线性映射才能找到合适的低维空间来降维。 非线性降维的额一种常用方法是基于核技巧对线性降维方法进行核化(kernelized)。这是对PCA的一种推广。
  3. 所属分类:机器学习

    • 发布日期:2019-05-31
    • 文件大小:7168
    • 提供者:aioo11
  1. 等度量映射(Isomap)(Python)

  2. 等度量映射(Isomap)是最经典的非线性映射降维方法之一,它在MDS的基础上引入了“测地距离”的概念,直接解决了MDS使用欧氏距离无法应对非线性流形的问题。
  3. 所属分类:机器学习

    • 发布日期:2019-05-31
    • 文件大小:3072
    • 提供者:aioo11
  1. 局部线性嵌入(Locally Linear Embedding,LLE)(Python)

  2. 局部线性嵌入(Locally Linear Embedding,LLE)也是非常重要的降维方法。和传统的PCA,LDA等关注样本方差的降维方法相比,LLE关注于降维时保持样本局部的线性特征,由于LLE在降维时保持了样本的局部特征,它广泛的用于图像图像识别,高维数据可视化等领域。
  3. 所属分类:机器学习

    • 发布日期:2019-05-31
    • 文件大小:4096
    • 提供者:aioo11
  1. PCA降维python的代码以及结果.doc

  2. 理解 “使用Numpy模拟PCA计算过程”与“使用sklearn进行PCA降维运算”两种方法;把 iris四维数据集降维,画出散点图
  3. 所属分类:Windows Server

    • 发布日期:2020-05-11
    • 文件大小:134144
    • 提供者:weixin_47221460
  1. 主成分分析(PCA)Python代码.ipynb

  2. PCA(Principal Component Analysis),即主成分分析方法,是一种使用最广泛的数据降维算法。PCA的主要思想是将n维特征映射到k维上,这k维是全新的正交特征也被称为主成分,是在原有n维特征的基础上重新构造出来的k维特征。
  3. 所属分类:机器学习

    • 发布日期:2020-03-12
    • 文件大小:54272
    • 提供者:qq_42436163
  1. python数据预处理方式 :数据降维

  2. 今天小编就为大家分享一篇python数据预处理方式 :数据降维,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
  3. 所属分类:其它

    • 发布日期:2020-09-17
    • 文件大小:75776
    • 提供者:weixin_38659311
  1. Python进行统计建模

  2. 前言 大家好,在之前的文章中我们已经讲解了很多Python数据处理的方法比如读取数据、缺失值处理、数据降维等,也介绍了一些数据可视化的方法如Matplotlib、pyecharts等,那么在掌握了这些基础技能之后,要进行更深入的分析就需要掌握一些常用的建模方法,本文将讲解如何利用Python进行统计分析。和之前的文章类似,本文只讲如何用代码实现,不做理论推导与过多的结果解释(事实上常用的模型可以很轻松的查到完美的推导与解析)。因此读者需要掌握一些基本的统计模型比如回归模型、时间序列等。 Stat
  3. 所属分类:其它

    • 发布日期:2020-12-17
    • 文件大小:454656
    • 提供者:weixin_38621312
  1. 机器学习 特征工程 Python sklearn

  2. 机器学习 特征工程 Python sklearn 本博客代码:Github_GDUT-Rp 1 特征工程 数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。 特征处理是特征工程的核心部分,sklearn提供了较为完整的特征处理方法,包括数据预处理,特征选择,降维等。首次接触到sklearn,通常会被其丰富且方便的算法模型库吸引,但是这里的介绍的特征处理库也十分强大! 2 数据预处理 通过特征提取,我们能得到未经处理的特征,这时的特征可能有以下问题: 不属于同一量纲:即特征的规
  3. 所属分类:其它

    • 发布日期:2020-12-22
    • 文件大小:610304
    • 提供者:weixin_38677260
  1. 机器学习入门 — LDA与PCA算法(公式推导、纯python代码实现、scikit-learn api调用对比结果)

  2. 为什么要做降维: 提高计算效率 留存有用的特征,为后续建模使用 在项目中实际拿到的数据,可能会有几百个维度(特征)的数据集,这样的数据集在建模使用时,非常消耗计算资源,所以需要通过使用降维方法来优化数据集 线性判别分析(Linear Discriminant Analysis) 用途:数据预处理中的降维,分类任务(有监督问题) 目标:LDA关心的是能够最大化类间区分度的坐标轴成分 将特征空间(数据集中的多维样本)投影到一个维度更小的 k 维子空间中,同时保持区分类别的信息 原理:投影到维度更低的
  3. 所属分类:其它

    • 发布日期:2020-12-21
    • 文件大小:287744
    • 提供者:weixin_38654855
  1. 线性分类的数学基础与应用、Fisher判别的推导(python)、Fisher分类器(线性判别分析,LDA)

  2. 文章目录一、线性分类的数学基础与应用1、Fisher基本介绍2、Fisher判别思想3、举例二、Fisher判别的推导(python)1、代码2、代码结果三、Fisher分类器1、定义2、scikit-learn中LDA的函数的代码测试3、监督降维技术四、参考文献 一、线性分类的数学基础与应用 1、Fisher基本介绍 Fisher判别法是一种投影方法,把高维空间的点向低维空间投影。在原来的坐标系下,可能很难把样品分开,而投影后可能区别明显。一般说,可以先投影到一维空间(直线)上,如果效果不理想
  3. 所属分类:其它

    • 发布日期:2020-12-20
    • 文件大小:98304
    • 提供者:weixin_38661939
  1. Python sklearn库实现PCA教程(以鸢尾花分类为例)

  2. PCA简介 主成分分析(Principal Component Analysis,PCA)是最常用的一种降维方法,通常用于高维数据集的探索与可视化,还可以用作数据压缩和预处理等。矩阵的主成分就是其协方差矩阵对应的特征向量,按照对应的特征值大小进行排序,最大的特征值就是第一主成分,其次是第二主成分,以此类推。 基本步骤: 具体实现 我们通过Python的sklearn库来实现鸢尾花数据进行降维,数据本身是4维的降维后变成2维,可以在平面中画出样本点的分布。样本数据结构如下图: 其中样本总数
  3. 所属分类:其它

    • 发布日期:2020-12-20
    • 文件大小:145408
    • 提供者:weixin_38686677
  1. python实现PCA降维的示例详解

  2. 概述 本文主要介绍一种降维方法,PCA(Principal Component Analysis,主成分分析)。降维致力于解决三类问题。 1. 降维可以缓解维度灾难问题; 2. 降维可以在压缩数据的同时让信息损失最小化; 3. 理解几百个维度的数据结构很困难,两三个维度的数据通过可视化更容易理解。 PCA简介 在理解特征提取与处理时,涉及高维特征向量的问题往往容易陷入维度灾难。随着数据集维度的增加,算法学习需要的样本数量呈指数级增加。有些应用中,遇到这样的大数据是非常不利的,而且从大数据集中学习
  3. 所属分类:其它

    • 发布日期:2020-12-20
    • 文件大小:152576
    • 提供者:weixin_38752897
  1. B.tech-Disease-Prediction-Project:通过机器学习和Python开发的疾病预测系统最后一年项目-源码

  2. B.技术疾病预测项目 通过机器学习和Python开发的疾病预测系统最后一年项目 最终疾病预测项目 通过机器学习和Python开发的疾病预测系统最后一年项目 机器学习-机器学习是一种使分析模型构建自动化的数据分析方法。 它是人工智能的一个分支,其基础是系统可以从数据中学习,识别模式并在最少的人工干预下做出决策。 Scikit-learn(Sklearn)是用于Python中机器学习的最有用和最强大的库。 它通过Python中的一致性接口为机器学习和统计建模提供了一系列有效的工具,包括分类,回归
  3. 所属分类:其它

    • 发布日期:2021-03-14
    • 文件大小:654336
    • 提供者:weixin_42131633
  1. Python机器学习实训营(2020版).rar

  2. Python机器学习实训营(2020版)视频教程; 章节1:线性回归原理推导 章节2:线性回归代码实现 章节3:模型评估方法 章节4:线性回归实验分析 章节5:逻辑回归原理推导 章节6:逻辑回归代码实现 章节7:逻辑回归实验分析 章节8:聚类算法-Kmeans&Dbscan原理 章节9:Kmeans代码实现 章节10:聚类算法实验分析 章节11:决策树原理 章节12:决策树代码实现 章节13:决策树实验分析 章节14:集成算法原理 章节15:集成算法实验分析 章节16:支持向量机原理推导 章节1
  3. 所属分类:机器学习

    • 发布日期:2021-03-08
    • 文件大小:816
    • 提供者:u011552756
  1. gammy:Python中的贝叶斯扭曲的广义加性模型-源码

  2. Gammy –使用贝叶斯扭曲的Python中的广义加性模型 广义加性模型是一种预测性数学模型,定义为用观察数据校准(拟合)的项之和。 该软件包为配置和拟合此类模型提供了希望的界面。 模型参数的贝叶斯解释得到了促进,并简化了特征集。 概括 广义的加性模型形成了令人惊讶的通用框架,用于为生产软件和科学研究构建模型。 该Python软件包提供了用于将模型项构建为各种基础函数的分解的工具。 可以将术语建模为各种内核的高斯过程(降维),分段线性函数以及B样条。 当然,还支持非常简单的术语,例如行和常量(这
  3. 所属分类:其它

    • 发布日期:2021-02-16
    • 文件大小:846848
    • 提供者:weixin_42102358
  1. python实现拉普拉斯特征图降维示例

  2. 这种方法假设样本点在光滑的流形上,这一方法的计算数据的低维表达,局部近邻信息被最优的保存。以这种方式,可以得到一个能反映流形的几何结构的解。 步骤一:构建一个图G=(V,E),其中V={vi,i=1,2,3…n}是顶点的集合,E={eij}是连接顶点的vi和vj边,图的每一个节点vi与样本集X中的一个点xi相关。如果xi,xj相距较近,我们就连接vi,vj。也就是说在各自节点插入一个边eij,如果Xj在xi的k领域中,k是定义参数。 步骤二:每个边都与一个权值Wij相对应,没有连接点之间的权值为
  3. 所属分类:其它

    • 发布日期:2021-01-21
    • 文件大小:177152
    • 提供者:weixin_38617001
  1. 无监督学习之PCA降维

  2. 无监督学习:通过无标签的数据,学习数据的分布或数据与数据之间的关系。 1. 降维算法 1 定义:用低维的概念去类比高维的概念.将高维的图形转化为低维的图形的方法。 1.1. 算法模块 :PCA算法、NMF(非负矩阵分解)算法、LDA算法等。 1.2. Python库 :sklearn.decomposution; 2. 主成分分析( PCA )降维算法 1 主成分分析:主成分分析( Principal Component Analysis, PCA )是最常用的一种降维方法,通常用于高维数据集的
  3. 所属分类:其它

    • 发布日期:2021-01-21
    • 文件大小:162816
    • 提供者:weixin_38500090
  1. 使用python实现多维数据降维操作

  2. 一,首先介绍下多维列表的降维 def flatten(a): for each in a: if not isinstance(each,list): yield each else: yield from flatten(each) if __name__ == __main__: a = [[1,2],[3,[4,5]],6] print(list(flatten(a))) 二、这种降维方法同样适用于多维迭代器的降维 from collections impor
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:36864
    • 提供者:weixin_38735182
« 12 »