在使用完模型之后,添加这两行代码即可清空之前model占用的内存:
import tensorflow as tf
from keras import backend as K
K.clear_session()
tf.reset_default_graph()
补充知识:keras 多个模型测试阶段速度越来越慢问题的解决方法
问题描述
在实际应用或比赛中,经常会用到交叉验证(10倍或5倍)来提高泛化能力,这样在预测时需要加载多个模型。常用的方法为
mods = []
from kera
在网上搜过发现关于keras下的模型融合框架其实很简单,奈何网上说了一大堆,这个东西官方文档上就有,自己写了个demo:
# Function:基于keras框架下实现,多个独立任务分类
# Writer: PQF
# Time: 2019/9/29
import numpy as np
from keras.layers import Input, Dense
from keras.models import Model
import tensorflow as tf
# 生成训练集
dat
最近需要将使用keras训练的模型移植到手机上使用, 因此需要转换到tensorflow的二进制模型。
折腾一下午,终于找到一个合适的方法,废话不多说,直接上代码:
# coding=utf-8
import sys
from keras.models import load_model
import tensorflow as tf
import os
import os.path as osp
from keras import backend as K
def freeze_sessio
写这个博客的关键Bug: Value passed to parameter ‘input’ has DataType uint8 not in list of allowed values: float16, bfloat16, float32, float64。本博客将围绕 加载图片 和 保存图片到本地 来详细解释和解决上述的Bug及其引出来的一系列Bug。
加载图片
首先,造成上述Bug的代码如下所示
image_path = "data/test.jpg" # 本地的测试图片
imag