您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 文本挖掘tmSVM开源项目包含Python和Java两种版本带参考文档

  2. 文本挖掘tmSVM开源项目集成libSVM和liblinear包含Python和Java两种版本带PDF源码参考文档 简介 文本挖掘无论在学术界还是在工业界都有很广泛的应用场景。而文本分类是文本挖掘中一个非常重要的手段与技术。现有的分类技术都已经非常成熟,SVM、KNN、Decision Tree、AN、NB在不同的应用中都展示出较好的效果,前人也在将这些分类算法应用于文本分类中做出许多出色的工作。但在实际的商业应用中,仍然有很多问题没有很好的解决,比如文本分类中的高维性和稀疏性、类别的不平衡
  3. 所属分类:Python

    • 发布日期:2014-02-23
    • 文件大小:3145728
    • 提供者:vcfriend
  1. MachineLearning-master-python.zip

  2. 属于网络下载资源,感谢原作者的贡献。 ##目录介绍 - **DeepLearning Tutorials** 这个文件夹下包含一些深度学习算法的实现代码,以及具体的应用实例,包含: Keras使用进阶。介绍了怎么保存训练好的CNN模型,怎么将CNN用作特征提取,怎么可视化卷积图。 [keras_usage]介绍了一个简单易用的深度学习框架keras,用经典的Mnist分类问题对该框架的使用进行说明,训练一个CNN,总共不超过30行代码。 将卷积神经网络CNN应用于人脸识别的一个demo,人脸数
  3. 所属分类:专业指导

    • 发布日期:2016-07-04
    • 文件大小:1048576
    • 提供者:qq_33042687
  1. 空中写字与数字识别

  2. 使用说明:手动框出特定部位,使用KCF算法对其进行跟踪,绘出轨迹图案,再将手写图案送去分类器分类。该程序实现的分类器有opencv自带的knn、svm,以及用tensorflow实现的基于minst数据集训练出的cnn模型、softmax模型。文档包含训练模型所需的python代码。
  3. 所属分类:C++

    • 发布日期:2017-04-03
    • 文件大小:80896
    • 提供者:hyk_1996
  1. k-近邻算法(knn)的Python实现

  2. 主要使用python实现了knn分类算法。适合初学者使用。 主函数是classifyPerson()
  3. 所属分类:机器学习

    • 发布日期:2018-01-04
    • 文件大小:6144
    • 提供者:hquzkzhang
  1. python实现knn算法分类(可视化)

  2. 利用sklearn生成样本数据,使用knn算法进行分类,实现可视化,使用python算法
  3. 所属分类:Python

    • 发布日期:2018-09-25
    • 文件大小:1024
    • 提供者:qq_37885745
  1. 正向最大匹配分词算法及KNN文本分类算法python实现

  2. 这份代码是我们专业的一个实验,内容包含了文本分词和文本分类。分别使用了正向最大匹配算法和KNN算法。分词速度平均153295词/秒,189100字符/秒。文本分类使用tf-idf计算单词权重进行特征选择,我测试时选择前100个特征词,根据k的不同取值,分类的准确度平均为75%。
  3. 所属分类:机器学习

    • 发布日期:2019-05-12
    • 文件大小:15360
    • 提供者:weixin_42432681
  1. 图像分类K最近邻python代码实现

  2. Deep learning for computer vision with python第7章图像分类的KNN算法实现,数据集使用kaggle 上的dogs and cats.
  3. 所属分类:机器学习

    • 发布日期:2019-10-10
    • 文件大小:3072
    • 提供者:xmrzh
  1. 菊安酱的机器学习第1期-k-近邻算法(直播).pdf

  2. k-近邻算法的课件。来自于菊安酱的机器学习实战12期的免费教程。内涵python源码。菊安酱的直播间: 我们已经知道k近邻算法的工作原理,根据特征比较,然后提取样本集中特征最相似数据(最近邻)的分类标签。 那么如何进行比较呢?比如表1中新出的电影,我们该如何判断他所属的电影类别呢?如图2所示。 电影分类 120 爱情片(1,101) 爱情片(12,97) 80 爱情片(5,89) 水弊 60 ?(24,67) 动作片(112,9 20 动作片(1158) 动作片(108,5) 0 20 60 8
  3. 所属分类:讲义

    • 发布日期:2019-07-27
    • 文件大小:867328
    • 提供者:qiu1440528444
  1. 使用python实现kNN分类算法

  2. 主要为大家详细介绍了使用python实现kNN分类算法,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
  3. 所属分类:其它

    • 发布日期:2020-09-18
    • 文件大小:167936
    • 提供者:weixin_38739919
  1. Python使用sklearn库实现的各种分类算法简单应用小结

  2. 主要介绍了Python使用sklearn库实现的各种分类算法,结合实例形式分析了Python使用sklearn库实现的KNN、SVM、LR、决策树、随机森林等算法实现技巧,需要的朋友可以参考下
  3. 所属分类:其它

    • 发布日期:2020-09-19
    • 文件大小:44032
    • 提供者:weixin_38645208
  1. python运用sklearn实现KNN分类算法

  2. KNN(K-Nearest-Neighbours Classiflication)分类算法,供大家参考,具体内容如下 最简单的分类算法,易于理解和实现 实现步骤:通过选取与该点距离最近的k个样本,在这k个样本中哪一个类别的数量多,就把k归为哪一类。 注意 该算法需要保存训练集的观察值,以此判定待分类数据属于哪一类 k需要进行自定义,一般选取k<30 距离一般用欧氏距离,即​  通过sklearn对数据使用KNN算法进行分类 代码如下: ## 导入鸢尾花数据集 iris
  3. 所属分类:其它

    • 发布日期:2020-12-25
    • 文件大小:63488
    • 提供者:weixin_38638647
  1. 用python实现k近邻算法的示例代码

  2. K近邻算法(或简称kNN)是易于理解和实现的算法,而且是你解决问题的强大工具。 什么是kNN kNN算法的模型就是整个训练数据集。当需要对一个未知数据实例进行预测时,kNN算法会在训练数据集中搜寻k个最相似实例。对k个最相似实例的属性进行归纳,将其作为对未知实例的预测。 相似性度量依赖于数据类型。对于实数,可以使用欧式距离来计算。其他类型的数据,如分类数据或二进制数据,可以用汉明距离。 对于回归问题,会返回k个最相似实例属性的平均值。对于分类问题,会返回k个最相似实例属性出现最多的属性。 k
  3. 所属分类:其它

    • 发布日期:2020-12-25
    • 文件大小:62464
    • 提供者:weixin_38695159
  1. 使用python实现knn算法

  2. 本文实例为大家分享了python实现knn算法的具体代码,供大家参考,具体内容如下 knn算法描述 对需要分类的点依次执行以下操作: 1.计算已知类别数据集中每个点与该点之间的距离 2.按照距离递增顺序排序 3.选取与该点距离最近的k个点 4.确定前k个点所在类别出现的频率 5.返回前k个点出现频率最高的类别作为该点的预测分类 knn算法实现 数据处理 #从文件中读取数据,返回的数据和分类均为二维数组 def loadDataSet(filename): dataSet = [] l
  3. 所属分类:其它

    • 发布日期:2020-12-25
    • 文件大小:70656
    • 提供者:weixin_38614462
  1. Python代码实现KNN算法

  2. kNN算法是k-近邻算法的简称,主要用来进行分类实践,主要思路如下: 1.存在一个训练数据集,每个数据都有对应的标签,也就是说,我们知道样本集中每一数据和他对应的类别。 2.当输入一个新数据进行类别或标签判定时,将新数据的每个特征值与训练数据集中的每个数据进行比较,计算其到训练数据集中每个点的距离(下列代码实现使用的是欧式距离)。 3.然后提取k个与新数据最接近的训练数据点所对应的标签或类别。 4.出现次数最多的标签或类别,记为当前预测新数据的标签或类别。 欧式距离公式为: distanc
  3. 所属分类:其它

    • 发布日期:2020-12-24
    • 文件大小:50176
    • 提供者:weixin_38604916
  1. python使用knn实现特征向量分类

  2. 这是一个使用knn把特征向量进行分类的demo。 Knn算法的思想简单说就是:看输入的sample点周围的k个点都属于哪个类,哪个类的点最多,就把sample归为哪个类。也就是说,训练集是一些已经被手动打好标签的数据,knn会根据你打好的标签来挖掘同类对象的相似点,从而推算sample的标签。 Knn算法的准确度受k影响较大,可能需要写个循环试一下选出针对不同数据集的最优的k。 至于如何拿到特征向量,可以参考之前的博文。 代码: #-*- coding: utf-8 -*- __author_
  3. 所属分类:其它

    • 发布日期:2020-12-24
    • 文件大小:53248
    • 提供者:weixin_38624746
  1. Python 实现 KNN 分类算法

  2. 文章目录1. KNN1.1 KNN 分类算法步骤1.2 KNN 的优缺点2. python 实现 本文将详细讲述 KNN 算法及其 python 实现 1. KNN KNN(K-Nearest Neighbour)即 K最近邻,是分类算法中最简单的算法之一。KNN 算法的核心思想是 如果一个样本在特征空间中的 k 个最相邻的样本中的大多数属于某一个类别,则将该样本归为该类别 1.1 KNN 分类算法步骤 有 N 个已知分类结果的样本点,对新纪录 r 使用 KNN 将其分类 1.确定 k 值,确定
  3. 所属分类:其它

    • 发布日期:2020-12-22
    • 文件大小:115712
    • 提供者:weixin_38744375
  1. Python使用sklearn库实现的各种分类算法简单应用小结

  2. 本文实例讲述了Python使用sklearn库实现的各种分类算法简单应用。分享给大家供大家参考,具体如下: KNN from sklearn.neighbors import KNeighborsClassifier import numpy as np def KNN(X,y,XX):#X,y 分别为训练数据集的数据和标签,XX为测试数据 model = KNeighborsClassifier(n_neighbors=10)#默认为5 model.fit(X,y) predic
  3. 所属分类:其它

    • 发布日期:2021-01-01
    • 文件大小:45056
    • 提供者:weixin_38709379
  1. 使用python实现kNN分类算法

  2. k-近邻算法是基本的机器学习算法,算法的原理非常简单: 输入样本数据后,计算输入样本和参考样本之间的距离,找出离输入样本距离最近的k个样本,找出这k个样本中出现频率最高的类标签作为输入样本的类标签,很直观也很简单,就是和参考样本集中的样本做对比。下面讲一讲用python实现kNN算法的方法,这里主要用了python中常用的numpy模块,采用的数据集是来自UCI的一个数据集,总共包含1055个样本,每个样本有41个real的属性和一个类标签,包含两类(RB和NRB)。我选取800条样本作为参考样
  3. 所属分类:其它

    • 发布日期:2020-12-31
    • 文件大小:164864
    • 提供者:weixin_38516956
  1. python使用KNN算法识别手写数字

  2. 本文实例为大家分享了python使用KNN算法识别手写数字的具体代码,供大家参考,具体内容如下 # -*- coding: utf-8 -*- #pip install numpy import os import os.path from numpy import * import operator import time from os import listdir 描述: KNN算法实现分类器 参数: inputPoint:测试集 dataSet:训练集 labels:
  3. 所属分类:其它

    • 发布日期:2020-12-31
    • 文件大小:59392
    • 提供者:weixin_38500944
  1. K近邻算法(KNN)的C++实现和Python绘制GraphViz二叉树图源码 knn.zip

  2. K近邻算法(KNN)是一种多分类问题的常用分类方法。本资源是K近邻算法的C++实现和Python绘制GraphViz二叉树图源码,包括KNN近邻算法的C++实现,以及graphviz同步绘制源码,方便新接触k近邻算法的同学使用。经测试可以正确使用。
  3. 所属分类:机器学习

    • 发布日期:2021-02-13
    • 文件大小:48234496
    • 提供者:ProfSnail
« 12 »