您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 《动手学深度学习》笔记 Task04 机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer

  2. 机器翻译和数据集 机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。 数据预处理 将数据集清洗、转化为神经网络的输入minbatch 分词 字符串—单词组成的列表 建立词典 单词组成的列表—单词id组成的列表 载入数据集 Encoder-Decoder encoder:输入到隐藏状态 decoder:隐藏状态到输出 Sequence to Sequen
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:315392
    • 提供者:weixin_38739837
  1. 《动手学深度学习》Task04:机器翻译及相关技术+注意力机制与Seq2seq模型+Transformer

  2. 文章目录1 机器翻译及相关技术1.1 机器翻译基本原理1.2 Encoder-Decoder1.3 Sequence to Sequence模型1.4 Beam Search2 注意力机制与Seq2seq模型2.1 注意力机制2.2 注意力机制的计算函数介绍2.3 引入注意力机制的Seq2seq模型3 Transformer3.1 Transformer结构概念3.2 Transformer结构层剖析3.3 Transformer之Encoder+Decoder 1 机器翻译及相关技术 1.1
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:742400
    • 提供者:weixin_38667408
  1. Task04:机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer知识点总结

  2. 机器翻译 把一种语言自动翻译为另一种,输出的是单词序列(其长度可能与原序列不同) 步骤为:数据预处理 —> Seq2Seq模型构建 —> 损失函数 —> 测试 数据预处理: 读取数据。 处理编码问题,删除无效字符串 分词。把字符串转化为单词列表。 建立字典。把单词组成的列表转化为单词索引的列表 在tf、pytorch这类框架中要做padding操作,使一个batch数据长度相等 定义数据生成器。 Seq2Seq 6. 先用循环神经网络编码成一个向量再解码输出一个序列的元素。然
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:60416
    • 提供者:weixin_38682086
  1. 【DL学习笔记】打卡02:Task03-05

  2. Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶 Task04:机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer Task05:卷积神经网络基础;leNet;卷积神经网络进阶 过拟合、欠拟合及其解决方案 一类是模型无法得到较低的训练误差,我们将这一现象称作欠拟合(underfitting); 另一类是模型的训练误差远小于它在测试数据集上的误差,我们称该现象为过拟合(overfitting)。 在实践中,我们要尽可能同时应对欠拟合和过拟合。虽
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:70656
    • 提供者:weixin_38508497
  1. Task04:机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer

  2. 如果我们现在要做个中英文翻译,比如我是中国人翻译成 ‘i am Chinese’.这时候我们会发现输入有 5个中文字,而输出只有三个英文单词. 也就是输入长度并不等于输出长度.这时候我们会引入一种 编码器-解码器的模型也就是 (Encoder-Decoder).首先我们通过编码器 对输入 ‘我是中国人’ 进行信息编码, 之后将生成的编码数据输入 decoder 进行解码.一般编码器和解码器 都会使用循环神经网络. 当然为了使机器知道句子的结束我们会在每个句子后面增加 一个 表示 句子的结束.使
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:1048576
    • 提供者:weixin_38658982
  1. Task03、Task04、Task05

  2. 本文意在于记录短期学习中同僚总结的知识点,主要学习平台在伯禹https://www.boyuai.com/elites/course/cZu18YmweLv10OeV Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶(1天) Task04:机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer(1天) Task05:卷积神经网络基础;leNet;卷积神经网络进阶(1天) Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:117760
    • 提供者:weixin_38571878
  1. 《动手学深度学习》第二次打卡-学习小队

  2. 一、学习任务: Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶 Task04:机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer Task05:卷积神经网络基础;leNet;卷积神经网络进阶 二、学习要点 2.1 过拟合、欠拟合及其解决方案 过拟合:太过贴近于训练数据的特征了,在训练集上表现非常优秀,近乎完美的预测/区分了所有的数据,但是在新的测试集上却表现平平 欠拟合:样本不够或者算法不精确,测试样本特性没有学到,不具泛化性,拿到新样本后
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:512000
    • 提供者:weixin_38613154
  1. TASK04-注意力机制-机器翻译-Transformer

  2. 将注意力机制放到这里,以后会用到。 练习题放在最前面: 关于Transformer描述正确的是: 在训练和预测过程中,解码器部分均只需进行一次前向传播。 Transformer 内部的注意力模块均为自注意力模块。 解码器部分在预测过程中需要使用 Attention Mask。 自注意力模块理论上可以捕捉任意距离的依赖关系。 答案解释 选项1:训练过程1次,预测过程要进行句子长度次 选项2:Decoder 部分的第二个注意力层不是自注意力,key-value来自编码器而query来自解码器 选项3
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:118784
    • 提供者:weixin_38744375
  1. 伯禹AI – task 04 机器翻译、注意力机制与seq2seq模型、Transformer架构

  2. (一)机器翻译及其相关技术 1.  机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。 数据预处理:将数据集清洗、转化为神经网络的输入minbatch 分词:字符串—单词组成的列表 建立字典:单词组成的列表—单词id组成的列表 Encoder-Decoder encoder:输入到隐藏状态 decoder:隐藏状态到输出 2.  Sequence 2
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:109568
    • 提供者:weixin_38639747
  1. 《动手学深度学习》Task04 :机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer

  2. Task04 :机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer 1.机器翻译及相关技术 机器翻译和数据集 机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。 步骤: 1.读取数据 2.数据预处理 3.分词:将字符串变成单词组成的列表 4.建立词典:将单词组成的列表变成单词id组成的列表 5.Encoder-Decoder:
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:1048576
    • 提供者:weixin_38501045
  1. Task 04- 机器翻译-注意力机制-Seq2seq-Transformer

  2. Task 04- 机器翻译-注意力机制-Seq2seq-Transformer 1 机器翻译(Machine Translation) 1.0 数据集形式 1.1 序列预处理 序列padding(保持序列的长度一致)–> valid length:序列未padding之前的长度 def pad(line, max_len, padding_token): if len(line) > max_len: return line[:max_len] re
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:533504
    • 提供者:weixin_38742124
  1. Task04:机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer学习笔记

  2. 机器翻译和数据集 机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。 import sys sys.path.append(’/home/kesci/input/d2l9528/’) import collections import d2l import zipfile from d2l.data.base import Vocab import t
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:93184
    • 提供者:weixin_38509504
  1. 动手学深度学习Pytorch Task04

  2. 本节课主要内容为机器翻译及相关技术、注意力机制与Seq2seq模型、Transformer 一、机器翻译及相关技术 机器翻译:将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。 导入库 import os os.listdir('/home/kesci/input/') import sys sys.path.append('/home/kesci/input/d2l9528/'
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:807936
    • 提供者:weixin_38693589
  1. 动手学深度学习实现DAY-2

  2. 节选自“ElitesAI·动手学深度学习PyTorch版” Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶(1天) Task04:机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer(1天) Task05:卷积神经网络基础;leNet;卷积神经网络进阶(1天) 过拟合、欠拟合及其解决方案 过拟合、欠拟合的概念 权重衰减 丢弃法 模型选择、过拟合和欠拟合 训练误差和泛化误差 在解释上述现象之前,我们需要区分训练误差(training err
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:1048576
    • 提供者:weixin_38586279
  1. 【Pytorch】动手学深度学习(二)

  2. 学习安排如下: Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶(1天) Task04:机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer(1天) Task05:卷积神经网络基础;leNet;卷积神经网络进阶(1天) Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶(1天) 梯度消失部分,主要是协变量偏移、标签偏移、概念偏移三个概念,第一次接触; 循环神经网络以及过拟合部分比较容易理解; Task04:机器翻译及
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:51200
    • 提供者:weixin_38717359
  1. Task04:机器翻译及相关技术/注意力机制与Seq2seq模型/Transformer

  2. 1.机器翻译 机器翻译(MT)是将一个句子 x 从一种语言( 源语言 )转换为另一种语言( 目标语言 )的句子 y 的任务。 机器翻译的大致流程就是根据输入的文本,神经网络开始学习和记忆,这个就是所谓的Encoder编码过程;然后根据自己的记忆,把文本一一翻译出来,这个就是所谓的Decoder解码过程。 机器翻译的基本流程如下: 文本处理,这里我是以eng_fra的文本为例,每行是english[tab]french,以tab键分割。获取文本,清洗。 分别建立字典,一个english,一个f
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:403456
    • 提供者:weixin_38693589
  1. 动手学深度学习 Task04 机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer

  2. 【一】机器翻译及相关技术 机器翻译(MT): 将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出的是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。 数据预处理 将数据集清洗、转化为神经网络的输入minbatch。字符在计算机里是以编码的形式存在,我们通常所用的空格是 \x20 ,是在标准ASCII可见字符 0x20~0x7e 范围内。 而 \xa0 属于 latin1 (ISO/IEC_8859-1)中的扩展字符集字
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:424960
    • 提供者:weixin_38653040
  1. DAY 2 动手学习深度学习

  2. 【任务安排】: Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶(1天) Task04:机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer(1天) Task05:卷积神经网络基础;leNet;卷积神经网络进阶(1天) Task03: 过拟合、欠拟合及其解决方案 过拟合、欠拟合的概念 权重衰减 丢弃法 梯度消失、梯度爆炸 梯度消失和梯度爆炸 考虑到环境因素的其他问题 Kaggle房价预测 循环神经网络进阶 深度卷积神经网络(AlexNet) 使
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:194560
    • 提供者:weixin_38520258
  1. 动手学深度学习打卡之二。

  2. 第二次打卡内容(2月15日-18日) Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶(1天) Task04:机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer(1天) Task05:卷积神经网络基础;leNet;卷积神经网络进阶(1天) 感觉内容比较多啦,终于看完了。。 下面附上一些学习中查到的资料。 Deep Learning(深度学习)学习笔记整理系列之(一) b站上动手学深度学习 开学前要学完哦!!加油!! 作者:poppy917
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:28672
    • 提供者:weixin_38506835
  1. 陈猪的机器学习之路-click02

  2. Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶(1天) 梯度消失部分,主要是协变量偏移、标签偏移、概念偏移三个概念,第一次接触; 循环神经网络以及过拟合部分比较容易理解; Task04:机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer(1天) 第一次接触encoder-decoder两个概念,自动翻译的核心,就是先将一句话编码,然后通过解码,得到新的语言,听起来很玄,nlp还是要复杂很多的; 注意力机制,本质上是提取一段字符内值得注意的概
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:49152
    • 提供者:weixin_38633897