特点
这是分类算法贝叶斯算法的较为简单的一种,整个贝叶斯分类算法的核心就是在求解贝叶斯方程P(y|x)=[P(x|y)P(y)]/P(x)
而朴素贝叶斯算法就是在牺牲一定准确率的情况下强制特征x满足独立条件,求解P(x|y)就更为方便了
但基本上现实生活中,没有任何关系的两个特征几乎是不存在的,故朴素贝叶斯不适合那些关系密切的特征
from collections import defaultdict
import numpy as np
from sklearn.datasets
本文代码来之《数据分析与挖掘实战》,在此基础上补充完善了一下~
代码是基于SVM的分类器Python实现,原文章节题目和code关系不大,或者说给出已处理好数据的方法缺失、源是图像数据更是不见踪影,一句话就是练习分类器(▼㉨▼メ)
源代码直接给好了K=30,就试了试怎么选的,挑选规则设定比较单一,有好主意请不吝赐教哟
# -*- coding: utf-8 -*-
Created on Sun Aug 12 12:19:34 2018
author: Luove
from sklearn